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Abstract

We propose a new methodology for the numerical solution of the isothermal Navier-Stokes-
Korteweg equations. Our methodology is based on a semi-discrete Galerkin method in-
voking functional entropy variables, a generalization of classical entropy variables, and a
new time integration scheme. We show that the resulting fully discrete scheme is uncon-
ditionally stable-in-energy, second-order time-accurate, and mass-conservative. We utilize
isogeometric analysis for spatial discretization and verify the aforementioned properties by
adopting the method of manufactured solutions and comparing coarse mesh solutions with
overkill solutions. Various problems are simulated to show the capability of the method. Our
methodology provides a means of constructing unconditionally stable numerical schemes for
nonlinear non-convex hyperbolic systems of conservation laws.

Keywords: Phase-field model, Van der Waals fluid, Phase transition, Non-convex flux,
Hyperbolic-elliptic mixed problem, Nonlinear stability, Entropy variables, Time integration,
Isogeometric analysis
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1 Introduction

We present a new fully discrete numerical formulation for the isothermal Navier-Stokes-
Korteweg equations. This formulation is motivated by the concept of entropy variables
and is provably unconditionally stable-in-energy and second-order accurate in time. Con-
sequently, our new formulation exhibits enhanced robustness in comparison with classical
methods, making it an attractive candidate for the numerical simulation of phase transition
phenomena.

1.1 Phase transition phenomena and the Navier-Stokes-Korteweg
equations

Liquid-vapor phase transition phenomena occur ubiquitously in the natural world as well
as in engineering practice. For example, one study shows that sea water’s liquid-vapor
transition induced by shrimp claw closure is one major contribution to deep sea background
noise [66]. In the shipbuilding industry, liquid-vapor phase transition is a critical factor in
the design of robust, low-noise, and efficient propellers [45], and, nowadays, carbon dioxide
is compressed into a supercritical fluid state and injected into underground reservoirs to
mitigate the greenhouse effect [64]. Despite the common occurrences of the phase transition
phenomenon, it is rather poorly understood from a theoretical standpoint. Introduced by
and named after the 1910 Nobel Laureate in physics, the van der Waals fluid model is
considered an ideal candidate for modeling the liquid-vapor phase transition phenomenon.
In the van der Waals model, the description of the liquid and vapor phases of a single
material are unified into one continuous equation of state. This equation of state is regarded
as a generalization of the perfect gas law by accounting for long-range molecular interactions
and is even believed applicable to solid phases [40]. Using the van der Waals fluid model,
Korteweg derived a model of capillarity from thermodynamic considerations. This model
can then be inserted into the compressible Navier-Stokes equations, resulting in a third-order
partial differential system of balance laws known as the Navier-Stokes-Korteweg equations.
This system was shown to satisfy the second law of thermodynamics in 1985 [23]. In the
present work, we restrict our attention to the isothermal Navier-Stokes-Korteweg equations
and develop a new numerical scheme to study the liquid-vapor two phase flow of a single
substance.

The van der Waals fluid model has been a focal point of research across different dis-
ciplines over the last few decades. Mathematically, it is known that the Navier-Stokes-
Korteweg system is of nonlinear hyperbolic type above a critical temperature in the sharp-
interface limit of vanishing viscosity and capillarity, while below the critical temperature, it
is a mixed hyperbolic-elliptic differential system. Existence, uniqueness, and well-posedness
results for such systems are still lacking [46], though a number of mathematical results have
been established for the Navier-Stokes-Korteweg equations in the presence of non-vanishing
viscosity [28] or capillarity [9, 14, 20, 35, 44]. We anticipate that our new numerical scheme
could motivate further theoretical study. The Navier-Stokes-Korteweg equations can be cat-
egorized as a phase-field model. In the continuum mechanics community, the phase-field
approach is used to model various types of multiphase phenomena including microstructure
evolution [16], ferroelectric ceramics [63], and cancerous tumor growth [52], to name just a
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few. Despite its widespread applicability, the van der Waals fluid model is not perfect. As
will be shown in Figure 2, the van der Waals fluid model mimics the behavior of fluid in
liquid and vapor phases qualitatively, but it is by no means accurate. Recent efforts have
been made to modify the model in an attempt to increase its accuracy for specific materials
[57].

1.2 Entropy variables and provably stable-in-entropy1 schemes

In the sharp-interface limit of vanishing viscosity and capillarity, the Navier-Stokes-Korteweg
equations become a partial differential system of nonlinear hyperbolic or mixed (hyperbolic-
elliptic) type. Weak solutions of these types of equations are typically non-unique and exhibit
several distinct wave structures. In order to obtain physically admissible solutions, one or
more additional constraints must be placed on weak solutions. In the context of the Navier-
Stokes-Korteweg equations, one should enforce the second law of thermodynamics to ensure
the mathematical entropy is non-increasing in time. Such a relation should also be satisfied
on the discrete level. Indeed, as Sobolev norms have been adopted for analyzing stability
of linear problems [36], entropy norms play an analogous role in analyzing the stability of
nonlinear problems.

The study of entropy-stable schemes for gas dynamics can be traced back to early work
on symmetrization of the Euler and Navier-Stokes equations [34, 38, 65]. In those works, it
was shown that the weighted residual form of the symmetrized Navier-Stokes equations will
produce semi-discrete solutions automatically satisfying the Clausius-Duhem inequality. The
symmetrized form of the Navier-Stokes equations invokes a particular set of fluid variables
which are referred to as entropy variables. In the late 1980s, it was proven that the weighted
residual form of the symmetrized Navier-Stokes equations in conjunction with a space-time
formulation constitutes a fully discrete scheme which is provably unconditionally stable-in-
entropy [58, 59]. However, the situation becomes more complicated in the context of the van
der Waals fluid model. The system of conservation laws describing a van der Waals fluid
exhibit a mixed type differential system under the critical temperature since the associated
entropy function is not globally convex. This fact results in two main difficulties. First and
foremost, the classical way of defining entropy variables does not result in a viable variable
set. Namely, the mapping between conservation variables and classical entropy variables is
not invertible (see our discussion in Section 2.4). Second, the space-time method is no longer
guaranteed to be unconditionally stable-in-entropy as its stability relies on one crucial fact
– that the Jacobian matrix describing the mapping from conservation variables to classical
entropy variables is positive definite. In the context of the van der Waals fluid model,
the Jacobian matrix can be singular or even negative definite within the diffuse interface.
Numerical analyses for mixed type differential systems have been carried out by precursors
in the finite difference community [42, 60, 62]. However, to the best of our knowledge, there
are very few semi-discrete schemes that have achieved entropy stability [15, 17]. Among
the schemes that are indeed entropy stable, the common techniques employed are intricate

1In the isothermal case, the second law of thermodynamics is represented in terms of an energy dissipation
inequality, where the total energy takes on the role of mathematical entropy function. Hence we call our
method stable-in-energy, which is equivalent to the notion of stable-in-entropy. In the remainder of the text,
the two terms “stable-in-energy” and “stable-in-entropy” are used interchangeably.
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discrete flux terms to directly enforce the nonlinear stability condition. Moreover, there have
been no practical provably stable-in-entropy fully discrete schemes developed as of yet.

In this work, the two difficulties mentioned above are addressed. First, we generalize
the notion of entropy variables to the functional setting. In the presence of capillarity, the
standard mathematical entropy function is supplemented with a differential regularization
term and new entropy variables are defined as the variational derivatives of this new math-
ematical entropy functional with respect to conservation variables. A calculation will reveal
that the entropy variable corresponding to momentum is simply the velocity field while the
entropy variable corresponding to density is a complicated and nonlinear function of density,
velocity, and derivatives of the density field. We introduce this non-trivial entropy variable
as a new independent variable and couple it with our conservation laws by replacing pressure
and capillarity terms with this new variable. In doing so, the equation associated with the
entropy variable plays an analogous role to the equation of state, and we no longer need to
deal with a degenerate change-of-variables from conservation variables to entropy variables.
It will be shown that the weighted residual formulation of this modified strong problem will
lead to an unconditionally stable-in-entropy semi-discrete formulation. Second, to develop
a stable fully discrete scheme, we apply a recently proposed time integration scheme based
on a perturbation of the trapezoidal rule [31]. This time integration scheme has several
appealing features: (1) The nonlinear stability of the semi-discrete scheme is inherited at
the fully discrete level; (2) Second-order accuracy is attained; (3) The introduced numerical
dissipation can be tuned by adjusting a single parameter; (4) There is no requirement of
convexity for the mathematical entropy functional. Hence, this time marching scheme is
an ideal candidate for constructing a fully discrete scheme for the Navier-Stokes-Korteweg
system. We prove the aforesaid properties of the fully discrete scheme with a comprehensive
suite of numerical tests.

1.3 Isogeometric analysis

Isogeometric analysis was initially proposed to create a pathway for breaking down the barrier
between Computer Aided Engineering (CAE) and Computer Aided Design (CAD) [37].
Invoking the isoparametric paradigm, isogeometric analysis utilizes the same basis functions
that are used in CAD as the basis for engineering analysis. Such an approach retains an
exact representation of geometry at every level of discretization in contrast with traditional
element/grid based numerical methods. Isogeometric analysis allows one to bypass many of
the costs of mesh refinement since there is no need to link to the CAD geometry once the
coarse but geometrically exact mesh is generated. In contrast, the classical mesh refinement
process requires communication with the CAD system at each refinement iteration, which is
not only time consuming but also error prone. Moreover, isogeometric analysis possesses the
unique k-refinement concept, which enables the generation of higher-order, higher-continuity
basis functions without a proliferation of degrees of freedom. The enhanced continuity of
isogeometric analysis basis functions has allowed for straightforward Galerkin discretization
of high-order differential equations which are often encountered, for example, in thin shell
theory [43] and phase-field models [12, 21, 30]. The k-refinement concept has also been
shown to exhibit enhanced robustness and accuracy in comparison with classical C0 finite
elements [19, 24]. In particular, it has been shown that smooth basis functions may result
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in sharp oscillation-free descriptions of the interface in diffuse interface models [30].

The first instantiations of isogeometric analysis were based on Non-Uniform Rational
B-Splines (NURBS), and to date, NURBS-based isogeometric analysis has achieved great
success in a number of application areas including complex flow problems [5, 7] and phase-
field models [30, 32]. Recently, isogeometric analysis technologies based on other classes
of basis functions have been developed. Perhaps the most promising of these technologies
is analysis-suitable T-splines [55]. T-splines allow local refinement as well as watertight
parametrization of complex geometry in a single patch. These two characteristics make this
technology an attractive candidate for capturing diffuse interfaces at realistic length scales.
Another recently proposed isogeometric technology is divergence-conforming B-splines for
incompressible flows [25]. It has been shown that this technology guarantees a pointwise
divergence-free velocity field and enjoys a variety of conservation properties at the discrete
level. We anticipate such basis functions may be utilized in compressible flow simulations
as well in the hopes of attaining a well-behaved discretization in the incompressible limit,
which is often the bane of compressible flow simulation technologies. In this work, we restrict
ourselves to the NURBS-based isogeometric analysis approach, but we would like to point out
that the new aforementioned technologies constitute promising future research directions.

1.4 Structure and content of the paper

The body of the paper begins in Section 2 where we present the strong form of the isothermal
Navier-Stokes-Korteweg equations, both in dimensional and non-dimensional form, and dis-
cuss the thermodynamic properties of the van der Waals fluid model. Following, we discuss
the deficiency of traditional entropy variables in the context of the van der Waals fluid model
and introduce so-called functional entropy variables. In Section 3, we discuss a new fully dis-
crete scheme for the Navier-Stokes-Korteweg problem based on functional entropy variables,
and we theoretically analyze the stability and accuracy properties of our scheme. In Section
4, we perform a comprehensive numerical verification of our scheme, and in Section 5, we
simulate a selection of benchmark problems. We present concluding remarks in Section 6. In
Appendices A and B we summarize our methodology for constructing unconditionally stable
algorithms through the use of quadrature rules. In Appendix A, we illustrate ideas with the
construction of an unconditionally stable first-order scheme. In Appendix B we derive an
unconditionally stable second-order scheme generalizing the mid-point rule.

2 The Isothermal Navier–Stokes–Korteweg equations

In this section, we present the isothermal Navier–Stokes–Korteweg equations and analyze
the thermodynamic properties of the van der Waals fluid model. Furthermore, we generalize
the notion of entropy variables to the setting of the Navier–Stokes–Korteweg equations by
introducing the concept of functional entropy variables, and we present a modified strong
form of the Navier–Stokes–Korteweg problem in terms of these variables.
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2.1 Continuous problem in strong form

Let Ω ⊂ Rd be an arbitrary open, connected, and bounded domain, where d is the number
of spatial dimensions. The boundary of Ω is denoted as Γ and assumed to be sufficiently
smooth (e.g. Lipschitz). The outward directed unit vector normal to Γ is denoted as n. The
time interval is denoted (0, T ), with T > 0. A pure material (e.g. water) is contained in Ω,
and ρ : Ω̄× (0, T )→ (0, b) and u : Ω̄× (0, T )→ Rd denote the density and velocity fields of
the material where b is the value of the maximal attainable density. The initial/boundary
value problem of interest can be stated as follows: find the density ρ and velocity u such
that

∂ρ

∂t
+∇ · (ρu) = 0 in Ω× (0, T ), (1)

∂(ρu)

∂t
+∇ · (ρu⊗ u + pI)−∇ · τ −∇ · ς = ρf in Ω× (0, T ), (2)

∇ρ · n = 0 on Γ× (0, T ), (3)

u = 0 on Γ× (0, T ), (4)

ρ(x, 0) = ρ0(x) in Ω̄, (5)

u(x, 0) = u0(x) in Ω̄. (6)

Above, ρ0 : Ω̄ → (0, b) and u0 : Ω̄ → Rd are given functions which represent the initial
density and velocity fields, τ is the viscous stress tensor, ς is the Korteweg stress tensor
defined as

ς = λ

(
ρ∆ρ+

1

2
|∇ρ|2

)
I− λ∇ρ⊗∇ρ (7)

where λ is the capillary coefficient, f is the body force per unit mass, and p is the thermo-
dynamic pressure. In this paper, we consider a Newtonian fluid, i.e., τ takes the form

τ = µ̄
(
∇u +∇Tu

)
+ λ̄∇ · uI (8)

where µ̄ and λ̄ are the first and second viscosity coefficients and I is the identity tensor.
To derive an explicit form for the thermodynamic pressure, we have to introduce thermo-
dynamic relations in terms of a free energy function W . In the isothermal case, W is a
univariate function of ρ. Therefore, the pressure p and the chemical potential µ are defined
by W and dW/dρ in the following manner.

Definition 1. (Fundamental Thermodynamic Relations) Given the isothermal free energy
function W (ρ), the pressure p and chemical potential µ are defined as:

p = ρ
dW

dρ
−W, (9)

µ =
dW

dρ
. (10)
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The isothermal free energy for a van der Waals fluid takes the form

W (ρ) = Rθρ log

(
ρ

b− ρ

)
− aρ2. (11)

where θ is the temperature, and R is the universal gas constant. From the above relations,
the following explicit forms for the pressure p and chemical potential µ can be derived:

p = Rb
ρθ

b− ρ
− aρ2, (12)

µ = Rθ log

(
ρ

b− ρ

)
+Rθ

b

b− ρ
− 2aρ. (13)

Equations (1)-(6) represent mass conservation, linear momentum balance, no-slip boundary
condition for the velocity field, homogenous Neumann boundary condition for the density
field, and initial conditions, respectively. For mathematical results regarding the existence
and uniqueness of local strong solutions, see [44].

The critical temperature θcrit, defined as the lowest temperature for the existence of a
single phase, is given by

θcrit =
8ab

27R
, (14)

and the critical density and the critical pressure pair (ρcrit, pcrit) are defined to be the in-
flection point of the pressure function (12) at the critical temperature. Simple calculations
show that

ρcrit =
b

3
, (15)

pcrit =
ab2

27
. (16)

Remark 1. The values of the critical temperature, density, and pressure for typical fluids
can be found from the NIST database [1]. For instance, the critical temperature, density,
and pressure of water are 647.096 K, 322.0 kg/m3, and 22.064× 106 N/m2 respectively.

Remark 2. In this work, we always assume that the Stokes’s assumption is satisfied, i.e.,

λ̄ = −2

3
µ̄. (17)

2.2 Dimensionless form of the isothermal Navier-Stokes-Korteweg
equations

We now provide dimensionless forms of the Navier-Stokes-Korteweg equations. The funda-
mental idea motivating dimensional analysis is that physical laws must be independent of
the units used to measure physical variables [3]. Additionally, a properly chosen reference
scale can help us avoid round-off errors in numerical computations. Here we rescale the
Navier-Stokes-Korteweg equations using the MLTΘ system. Let us denote the reference
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scale of mass by M0, length by L0, time by T0, and temperature by θ0. Then we have the
following non-dimensional quantities denoted with a superscript ∗:

x = L0x
∗, t = T0t

∗, ρ =
M0

L3
0

ρ∗, u =
L0

T0

u∗, f =
L0

T 2
0

f∗,

θ = θ0θ
∗, p =

M0

L0T 2
0

p∗, λ =
L7

0

M0T 2
0

λ∗, µ̄ =
M0

L0T0

µ̄∗ H =
M0

L0T 2
0

H∗. (18)

where H represents the total energy density. Using the scaling relations (18), the dimension-
less mass balance equation reads

M0

T0L3
0

(
∂ρ∗

∂t∗
+∇∗ · (ρ∗u∗)

)
= 0. (19)

The momentum balance equations are rescaled as

M0

T 2
0L

2
0

(
∂(ρ∗u∗)

∂t∗
+∇∗ · (ρ∗u∗ ⊗ u∗) +∇∗p∗ −∇∗ · τ ∗ −∇∗ · ς∗ − ρ∗f∗

)
= 0, (20)

where the dimensionless viscous stress tensor and Korteweg stress tensor read

τ ∗ = µ̄∗
(
∇∗u∗ +∇∗Tu− 2

3
∇∗ · u∗I

)
, (21)

ς∗ = λ∗
(
ρ∗∆∗ρ∗ +

1

2
|∇∗ρ∗|2

)
I− λ∗∇∗ρ∗∇∗Tρ∗. (22)

The equation of state is nondimensionalized as

M0

L0T 2
0

p∗ = Rbθ0
ρ∗M0θ

∗

bL3
0 − ρ∗M0

− aρ∗2M
2
0

L6
0

, (23)

and the total energy density is rescaled as

H∗ = W ∗(ρ∗) +
1

2
ρ∗|u∗|+ 1

2
λ∗|∇∗ρ∗|2, (24)

where

W ∗(ρ∗) = Rθ0
T 2

0

L2
0

θ∗ρ∗ log

(
M0ρ

∗

bL3
0 −M0ρ∗

)
− aM0T

2
0

L5
0

ρ∗2. (25)

Notice that the dimensionless viscosity coefficient µ̄∗ = L0T0µ̄/M0 measures the ratio of
the viscous force to the inertial force while the dimensionless capillarity coefficient λ∗ =
M0T

2
0 λ/L

7
0 measures the ratio of the surface tension to the inertia. Consequently, we denote

these two coefficients as

µ̄∗ =
1

Re
, λ∗ =

1

We
(26)

where Re is the Reynolds number and We is the Weber number [67].
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Remark 3. There are two other important dimensionless numbers associated with our prob-
lem. The capillarity number Ca, which measures the relative effect of the viscous force against
the surface tension force, is defined to be

Ca =
We

Re
, (27)

while the Bond number Bo, which measures the importance of the body force compared with
the surface tension, is defined to be:

Bo = |f∗|We. (28)

If we choose our reference scales such that

M0

L3
0

= b, (29)

M0

L0T 2
0

= ab2, (30)

θ0 = θcrit =
8ab

27R
, (31)

then the dimensionless isothermal Navier-Stokes-Korteweg equations read as follows:

∂ρ∗

∂t∗
+∇∗ · (ρ∗u∗) = 0, (32)

∂(ρ∗u∗)

∂t∗
+∇∗ · (ρ∗u∗ ⊗ u∗) +∇∗p∗ −∇∗ · τ ∗ −∇∗ · ς∗ − ρ∗f∗ = 0, (33)

where

p∗ =
8

27

θ∗ρ∗

1− ρ∗
− ρ∗2, (34)

W ∗(ρ∗) =
8

27
θ∗ρ∗ log

(
ρ∗

1− ρ∗

)
− ρ∗2, (35)

τ ∗ =
1

Re

(
∇∗u∗ +∇∗Tu∗ − 2

3
∇∗ · u∗I

)
, (36)

ς∗ =
1

We

((
ρ∗∆∗ρ∗ +

1

2
|∇∗ρ∗|2

)
I−∇∗ρ∗∇∗Tρ∗

)
, (37)

Re =
L0b
√
ab

µ̄
, (38)

We =
aL2

0

λ
. (39)

Likewise, the total energy is rescaled as

E∗(ρ∗, ρ∗u∗) =

∫
Ω

(
W ∗(ρ∗) +

1

2We
|∇∗ρ∗|2 +

1

2
ρ∗|u∗|2

)
dx∗. (40)
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From (29) and (30), we may find that the reference time scale T0 = L0/
√
ab, which can be

regarded as an inertial time scale. Among many other choices of time scales,
√
λ/(a2b) is

one associated with capillarity. Accordingly, we define the dimensionless time t̂ scaled by
the capillarity time scale:

t = T0t
∗ =

√
λ

a2b
t̂. (41)

Then we have

t̂ =

√
a2b

λ
T0t
∗ = L0

√
a

λ
t∗ = We

1
2 t∗. (42)

The relation (42) will be useful when we design our numerical algorithm in Section 3.3. We
will henceforth use only the dimensionless form of the Navier-Stokes-Korteweg equations
and, for the sake of notational simplicity, we will omit the superscript ∗ for dimensionless
quantities.

2.3 Thermodynamics of the van der Waals fluid model

Figure 1: Pressure as a function of density at temperatures θ = 0.85, 1.0, and 1.15. At
θ = 0.85, the elliptic region, defined as the range where the pressure function is monotonically
decreasing with respect to the density field, is (ρA, ρB) = (0.194, 0.496).

We now analyze in depth the thermodynamic properties of the van der Waals fluid model.
In Figure 1, we have plotted the van der Waals equation of state given by (34) at three
different temperatures. It is clear that the van der Waals pressure is a monotonically non-
decreasing function with respect to density when θ ≥ 1. In this regime, the material is called
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Figure 2: Comparison of van der Waals fluid model with real materials at θ = 0.85. The
data for water, carbon dioxide, methane, and propane are obtained from [1] and scaled to
dimensionless form.

Figure 3: Detailed comparison of van der Waals fluid model with real materials at θ = 0.85
in vapor phase. The data for water, carbon dioxide, methane, and propane are obtained
from [1] and scaled to dimensionless form.
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Figure 4: The isothermal free energy W as a function of density ρ at θ = 0.85 is plotted as
the blue solid line. The red dash-dotted line is the common tangent line passing through the
Maxwell states (ρv,W (ρv)) and (ρl,W (ρl)), which are marked as blue circles.

a supercritical fluid as there are no distinct liquid vapor phases. When the temperature drops
below the critical temperature, i.e., θ < 1, the pressure function is no longer monotone, and
there exists a region (ρA, ρB) where the pressure function decreases with respect to density,
as is shown in the figure. In this regime, the density range (0, ρA) corresponds to the vapor
phase while the range (ρB, 1) corresponds to the liquid phase. Mathematically, the Navier-
Stokes-Korteweg system is of elliptic type in the sharp-interface limit when the density lies
within the range (ρA, ρB). Moreover, the Mach number is imaginary and the system is
physically unstable in this elliptic region. This is not entirely unexpected as the elliptic
region corresponds to the interface between the liquid and vapor phases. The capillarity
term acts to stabilize this region. To validate the van der Waals fluid model, we have
downloaded the thermodynamic properties of water, carbon dioxide, methane, and propane
from the NIST online database [1] and compared them with the van der Waals equation of
state in dimensionless quantities. As is depicted in Figure 2 and 3, the van der Waals model
gives a qualitatively accurate approximation of the various materials behavior in both liquid
and vapor phases. It should be noted that the form of the equation of state is partially
determined by the choice of critical point given by (15) and (16). Hence, there is still room
to improve the van der Waals model for a specific material by tuning the parameters a and
b using, for example, least squares. Recently, endeavors have also been made to modify
the van der Walls model to get a more accurate representation of the pressure function for
specific materials [57].

At a fixed temperature θ < 1, the vapor phase density ρv ∈ (0, ρA) and the liquid phase

12



density ρl ∈ (ρB, 1) for a van der Waals fluid in equilibrium satisfy the following two relations:

p(ρv) = p(ρl), (43)

µ(ρv) = µ(ρl). (44)

The equilibrium densities (and their corresponding free energies) are referred to as Maxwell
states. In this work, we fix θ = 0.85. Solving the above two nonlinear equations at this
temperature results in ρv = 0.107 and ρl = 0.602.

Remark 4. Recalling the definitions of the pressure and the chemical potential given by (12)
and (13), we see the relations (43) and (44) imply that

W (ρv)−W (ρl)

ρv − ρl
= W

′
(ρl) = W

′
(ρv). (45)

This means that (ρv,W (ρv)) and (ρl,W (ρl)) lie on a common tangent line of W (ρ) as is
visually depicted in Figure 4.

The following proposition gives another interesting and important observation for the free
energy function W .

Proposition 1. The free energy function W (ρ) has positive fourth order derivative, i.e.,
W

′′′′
(ρ) > 0, for ρ ∈ (0, 1).

Proof. Direct computations reveal that

W
′′′′

(ρ) =
16θ(6ρ2 − 4ρ+ 1)

27ρ3(1− ρ)4
. (46)

By construction, the dimensionless temperature is always positive, i.e., θ > 0. Furthermore,
a direct calculation shows that the minimum of the quadratic polynomial 6ρ2−4ρ+1 is 1/3.
Finally, due to our choice of reference scales, we know 0 < ρ < 1. Combining all of these
facts with the expression given by (46) leads to the conclusion that W

′′′′
> 0.

Remark 5. Free energy functions characterized by a positive fourth order derivative prevail
in the area of phase-field modeling. This is a consequence of the fact that free energy functions
arising in phase-field models have convex-concave-convex structures. We call functions with a
positive fourth derivative as super-convex functions and functions with a negative fourth
derivative as super-concave functions.

The following lemma provides a nonlinear stability result for smooth solutions of the isother-
mal Navier-Stokes-Korteweg equations. It is a global version of the Clausis-Duhem inequality
in the isothermal setting.

Lemma 1. Let (ρ, ρu) be a sufficiently smooth solution of the isothermal Navier-Stokes-
Korteweg equations. Then, the total energy E satisfies the relation

d

dt
E(ρ(·, t), ρu(·, t)) = −

∫
Ω

τ : ∇udx +

∫
Ω

ρfdx, (47)

where E is defined in (40).
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Proof. We multiply the continuity equation by W
′
(ρ) − |u|

2

2
and the momentum equations

by u and integrate them over the domain Ω:∫
Ω

(
∂ρ

∂t
+∇ · (ρu)

)(
W

′
(ρ)− |u|

2

2

)
dx = 0, (48)∫

Ω

(
∂(ρu)

∂t
+∇ · (ρu⊗ u + pI)−∇ · τ −∇ · ς − ρf

)
· udx = 0. (49)

Summing the above two equation together and rearranging terms, it follows that∫
Ω

(
W

′
(ρ)

∂ρ

∂t
− |u|

2

2

∂ρ

∂t
+ u · ∂(ρu)

∂t
−∇ · ς

)
dx

=

∫
Ω

(
u · ∇ · τ + u · ρf− u · ∇ · (ρu⊗ u)−∇p · u−∇ · (ρu)W

′
(ρ) +∇ · (ρu)

|u|2

2

)
dx.

(50)

Recalling that ∇ · ς = ρ∇∆ρ/We, we have∫
Ω

(
W

′
(ρ)

∂ρ

∂t
+
|u|2

2

∂ρ

∂t
+ ρu · ∂u

∂t
− 1

We
ρu · ∇∆ρ

)
dx =

∫
Ω

(
u · ∇ · τ + u · ρf

−∇p · u− ρW ′
(ρ)∇ · u−W ′

(ρ)∇ρ · u +∇ · (ρu)
|u|2

2
− u · ∇ · (ρu⊗ u)

)
dx. (51)

We perform integration by parts and employ the boundary condition (4) to rewrite (51) as∫
Ω

(
d

dt
W (ρ) +

d

dt

(
ρ
|u|2

2

)
+

1

We
∇ · (ρu) ∆ρ

)
dx

=

∫
Ω

(
−∇u : τ + u · ρf− u · ∇

(
p+W (ρ)− ρW ′

(ρ)
)

+∇ ·
(
ρ|u|2u

))
dx (52)

=

∫
Ω

[
−∇u : τ + u · ρf− u · ∇

(
p+W (ρ)− ρW ′

(ρ)
)]
dx. (53)

Recalling p = ρW
′
(ρ)−W (ρ), ∇· (ρu) = −∂ρ/∂t and making use of the boundary condition

(3) yields ∫
Ω

[
d

dt
W (ρ) +

d

dt

(
ρ
|u|2

2

)
− 1

We

∂ρ

∂t
∆ρ

]
dx

=

∫
Ω

[
d

dt
W (ρ) +

d

dt

(
ρ
|u|2

2

)
+

1

We
∇
(
∂ρ

∂t

)
· ∇ρ

]
dx

=

∫
Ω

[
d

dt
W (ρ) +

d

dt

(
ρ
|u|2

2

)
+
d

dt

(
1

2We
|∇ρ|2

)]
dx

=

∫
Ω

(−∇u : τ + u · ρf) dx. (54)

Finally, if we move the time derivative out of the integral, we obtain the desired result:

d

dt
E(ρ(·, t), ρ(·, t)) =

d

dt

∫
Ω

[
W (ρ) +

(
ρ
|u|2

2

)
+

(
1

2We
|∇ρ|2

)]
dx

=

∫
Ω

(−∇u : τ + u · ρf) dx. (55)
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As a direct corollary of the the above lemma, we have the following energy dissipation
theorem.

Theorem 1. Let (ρ, ρu) be a sufficiently smooth solution of the isothermal Navier-Stokes-
Korteweg system given by (1)-(5). Assume that there is no body force (i.e., f = 0) and that
the Reynolds number is non-negative (i.e., Re ≥ 0). Then, we have the energy dissipation
inequality:

d

dt
E(ρ(·, t), ρu(·, t)) = −

∫
Ω

∇u : τdx ≤ 0. (56)

2.4 Functional entropy variables and a modified strong problem

For systems of conservation laws, stability with respect to a mathematical entropy function
H is considered as a suitable notion for nonlinear stability and as an admissibility criterion
for selecting physically relevant weak solutions. In the context of the isothermal Navier-
Stokes-Korteweg equations, such a stability condition is represented by the energy dissipation
relationship given by (56) where the corresponding mathematical entropy function is the
sum of isothermal free energy and kinetic energy. In [34, 65], it was shown that systems
of conservation laws which are endowed with a convex flux vector are symmetrizable if and
only if there exists a mathematical entropy function. Given a set of conservation variables
U , the entropy variables which symmetrize the system are defined as the derivatives of the
mathematical entropy function with respect to U . In [38], the authors extended these ideas
to the compressible Navier-Stokes equations. There, it was shown that the mathematical
entropy must be an affine function of the physical entropy function and that semi-discrete
solutions obtained from a weighted residual formulation based on entropy variables will
respect the Clausius-Duhem inequality. Hence, entropy variables are a critical ingredient
in the design of numerical schemes exhibiting nonlinear stability. To date, entropy-stable
schemes based on entropy variables have been successfully applied to various problem classes
including gas dynamics [59], the shallow water equations [13], and magnetohydrodynamics
[48].

Unfortunately, for the van der Waals fluid model, the standard methodology for con-
structing an entropy-stable semi-discrete formulation cannot be directly applied. Notably,
the entropy variables which are normally associated with the isothermal Navier-Stokes equa-
tions do not comprise a viable variable set in the context of the van der Waals model. This
is a consequence of the fact that the free energy function associated with the van der Waals
model is non-convex within the elliptic region, as is shown in the proof of the following
proposition.

Proposition 2. Let Ĥ = W (ρ) +
1

2
ρ|u|2 denote the mathematical entropy function associ-

ated with the isothermal Navier-Stokes equations. Furthermore, let U = (ρ, ρu)T denote the
conservation variables associated with the isothermal Navier-Stokes equations. If W is given
by the van der Waals model, the entropy variables V̂T = ∂Ĥ/∂U do not comprise a viable
variable set when θ ≤ 1 in the sense that the mapping from U to V̂ is not invertible within
the elliptic region.
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Proof. Let us consider the Hessian matrix
∂V̂
∂U

:

∂V̂
∂U

=
∂2Ĥ
∂U2

=


W

′′
(ρ) + |u|2

ρ
−u1

ρ
−u2

ρ
−u3

ρ

−u1

ρ
1
ρ

0 0

−u2

ρ
0 1

ρ
0

−u3

ρ
0 0 1

ρ

 . (57)

The determinant of the Hessian matrix is

det

(
∂2Ĥ
∂U2

)
=
dp

dρ

1

ρ4
. (58)

We know that below (at) the critical temperature there exists two (one) stationary points
where dp/dρ = 0. Hence, the Hessian matrix is not invertible everywhere and likewise neither
is the change-of-variables mapping from Û to V̂ .

Remark 6. While the entropy variables V̂ do not comprise a viable variable set when θ ≤ 1,
the Navier-Stokes-Korteweg equations can be formally symmetrized in terms of V̂, and the
inner product of V̂ with the Navier-Stokes-Korteweg equations does result in the Clausius-
Duhem inequality. This implies that entropy variables V̂ still can be used for the Navier-
Stokes-Korteweg equations when above the critical temperature, but that is not the focus of
this work.

Remark 7. Primitive variables (velocity and pressure) also do not comprise a viable variable
set in the context of the van der Waals fluid model, because one cannot uniquely solve for
the density field given the pressure field within the elliptic region.

Proposition 2 prohibits the use of entropy variables obtained from the entropy function
Ĥ since the change-of-variables mapping is degenerate within the elliptic region. However,
let us recall that the there exists a high-order capillarity term in the Navier-Stokes-Korteweg
equations which regularizes the singularity in the elliptic region. Indeed, this term can also
assist us in regularizing the entropy function Ĥ in such a way that we obtain well-defined
entropy variables. In this direction, let us consider the following new mathematical entropy
function:

H = Ĥ +
1

2We
|∇ρ|2 = W (ρ) +

1

2
ρ|u|2 +

1

2We
|∇ρ|2. (59)

The mathematical entropy function given by (59) coincides with the total energy density
given by (40) and is no longer just a function but rather a functional of the conservation
variables U . Therefore, to define the entropy variables associated with the new mathematical
entropy function, we take the variational derivative ofH with respect to U to define V . Under
appropriate boundary conditions (e.g. ∇ρ · n = 0 on ∂Ω), this yields

δH
δρ

= W
′
(ρ)− 1

2
|u|2 − 1

We
∆ρ, (60)

δH
δ(ρu)

= uT . (61)
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Notice that the capillarity regularization term results in the Laplace operator appearing in
δH/δρ. The presence of this Laplace operator dictates that the change-of-variables back from
entropy variables to conservation variables is non-local and involves the solution operator of
the Laplace problem. To avoid the difficulties associated with such an operator, we introduce
δH/δρ as a new unknown v to our system:

v = W
′
(ρ)− 1

We
∆ρ− |u|

2

2
. (62)

By rearranging terms in (62) and taking the gradient of both sides, we obtain an interesting
relationship between v and the pressure and capillarity terms appearing in the momentum
equations:

∇v +∇|u|
2

2
= W

′′
(ρ)∇ρ− 1

We
∇∆ρ

=
p,ρ
ρ
∇ρ− 1

We
∇∆ρ

=
1

ρ
(∇p−∇ · ς) . (63)

The above relationship implies that the pressure and capillarity terms in the momentum
balance equations can be replaced by terms involving v as follows:

∇p−∇ · ς = ρ∇v + ρ∇|u|
2

2
. (64)

This inspires the following modified strong form of the isothermal Navier-Stokes-Korteweg
equations in terms of ρ, u, and v:

∂ρ

∂t
+∇ · (ρu) = 0, (65)

∂(ρu)

∂t
+∇ · (ρu⊗ u)−∇ · τ + ρ∇v + ρ∇|u|

2

2
= ρf, (66)

v = W
′
(ρ)− 1

We
∆ρ− |u|

2

2
. (67)

Equation (67) can be understood as a new variational equation-of-state. We remark that
although some terms have been rewritten, (66) still provides a momentum balance law when
coupled with (67).

3 Numerical Formulation

In this section, we present a numerical scheme for the isothermal Navier-Stokes-Korteweg
equations based on the modified form given by (65)-(67). First, we show that the semi-
discrete scheme based on a weighted residual formulation of (65)-(67) is entropy-stable in
space. Next, we apply a new time integration scheme that inherits the entropy stability
property in time. Last, we discuss implementational details.

17



3.1 Weak form of the isothermal Navier–Stokes–Korteweg equa-
tions

We begin this section with some standard notation (see, for example, [26]). Let L2(Ω)
be the space of square integrable functions over the domain Ω. Let (·, ·)Ω represent the
L2 inner product over the domain Ω and (·, ·)Γ represent the L2 inner product over the
boundary Γ. Let H1(Ω) denote the space of functions in L2(Ω) with square integrable first-
order derivatives. Finally, let L2(0, T ;X) denote the space which consists of all strongly
measurable functions u : [0, T ]→ X with

‖u‖L2(0,T ;X) :=

(∫ T

0

‖u(t)‖2
X

)1/2

<∞. (68)

Our numerical scheme is based on the modified strong formulation (65)-(67). Let V1 de-
note the trial solution space for ρ, and let V2 denote the trial solution space for ui such
that ui ∈ V2 implies ui = 0 on Γ for each i = 1, 2, 3. We assume that V1 is also used as
a trial solution space for v. We further assume the test function spaces coincide with the
trial solution spaces. With these assumptions, the variational formulation for the isothermal
Navier-Stokes-Korteweg system given by (65)-(67) is stated as follows:

Find ρ(t) ∈ L2 (0, T ;V1) ∩ H1 (0, T ;L2(Ω)), u(t) = (u1(t), u2(t), u3(t))T ∈ (L2 (0, T ;V2))
3 ∩

(H1 (0, T ;L2(Ω)))
3
, and v(t) ∈ L2 (0, T ;V1), such that:(

q1,
∂ρ

∂t

)
Ω

− (∇q1, ρu)Ω = 0 ∀q1 ∈ V1, (69)(
q,u

∂ρ

∂t
+ ρ

∂u

∂t

)
Ω

− (∇q, ρu⊗ u)Ω + (q, ρ∇v)Ω +

(
q, ρ∇|u|

2

2

)
Ω

+ (∇q, τ )Ω = (q, ρf)Ω ∀q = (q2, q3, q4)T ∈ (V2)3 , (70)

(q5, v)Ω =

(
q5,W

′
(ρ)− |u|

2

2

)
Ω

+
1

We
(∇q5,∇ρ)Ω ∀q5 ∈ V1, (71)

with ρh(0) = ρh0 and uh(0) = uh0 in Ω.

Assuming sufficiently regular V1 and V2, integrating (69)-(71) by parts yields the Euler-
Lagrange form of the variational problem:(

q1,
∂ρ

∂t

)
Ω

+ (q1,∇ · (ρu))Ω − (q1, ρu · n)Γ = 0, (72)(
q,u

∂ρ

∂t
+ ρ

∂u

∂t

)
Ω

+ (q,∇ (ρu⊗ u))Ω + (q, ρ∇v)Ω +

(
q, ρ∇|u|

2

2

)
Ω

− (q,∇ · τ )Ω

− (q, ρu⊗ u · n)Γ − (q, τ · n)Γ − (q, ρf)Ω = 0, (73)

(q5, v)Ω −
(
q5,W

′
(ρ) +

|u|2

2

)
Ω

+
1

We
(q5,∆ρ)Ω −

1

We
(q5,∇ρ · n)Γ = 0. (74)
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Equations (72)-(74) enforce weak satisfaction of the differential equations given by (65)-(67)
and the boundary conditions given by (3). The following theorem reveals that solutions of
the variational problem given by (69)-(71) inherit the energy stability property of the strong
form of the isothermal Navier-Stokes-Korteweg equations.

Theorem 2. Sufficiently smooth weak solutions of the variational problem given by (69)-(71)
verify the nonlinear stability condition (55).

Proof. Since ρ and v share the same trial solution and test function spaces, we can take

q1 = v in (69), q5 =
∂ρ

∂t
in (71), and perform integration by parts. This results in(

v,
∂ρ

∂t

)
Ω

− (∇v, ρu)Ω = 0, (75)(
∂ρ

∂t
, v

)
Ω

= (ρ,t,W
′
(ρ)− |u|

2

2
)Ω −

(
ρ,t,

1

We
∆ρ

)
Ω

. (76)

Now we subtract the first equation above from the second:(
∂ρ

∂t
,W

′
(ρ)− |u|

2

2
− 1

We
∆ρ

)
Ω

= (∇v, ρu)Ω. (77)

Noting that
δH
δρ

= W
′
(ρ)− |u|

2

2
− 1

We
∆ρ, we arrive at the following relation:

δE
δρ

[
∂ρ

∂t
] :=

(
∂ρ

∂t
,
δH
δρ

)
Ω

= (∇v, ρu)Ω. (78)

Next, we take q = u in (70):(
u,
∂(ρu)

∂t

)
Ω

− (∇u, ρu⊗ u)Ω + (u, ρ∇v)Ω +

(
u, ρ∇|u|

2

2

)
Ω

+ (∇u, τ )Ω = (u, ρf)Ω . (79)

Noting that
δH
δ(ρu)

= uT , the above equation implies that

δE
δ(ρu)

[
∂(ρu)

∂t
] :=

(
∂(ρu)

∂t
,
δH
δ(ρu)

)
Ω

= (∇u, ρu⊗ u)Ω − (u, ρ∇v)Ω −
(

u, ρ∇|u|
2

2

)
Ω

− (∇u, τ )Ω + (u, ρf)Ω (80)

Next, we use the chain rule and equations (78) and (80) to arrive at the following expression
for the time derivative of the free energy E :

dE
dt

=
δE
δρ

[
∂ρ

∂t
] +

δE
δ(ρu)

[
∂(ρu)

∂t
]

= (∇v, ρu)Ω + (∇u, ρu⊗ u)Ω − (u, ρ∇v)Ω −
(

u, ρ∇|u|
2

2

)
Ω

− (∇u, τ )Ω + (u, ρf)Ω

= (∇u, ρu⊗ u)Ω −
(

u, ρ∇|u|
2

2

)
Ω

− (∇u, τ )Ω + (u, ρf)Ω . (81)
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Simple calculation shows that

(∇u, ρu⊗ u)Ω −
(

u, ρ∇|u|
2

2

)
Ω

= 0. (82)

Then (81) becomes:

dE
dt

= − (∇u, τ )Ω + (u, ρf)Ω . (83)

In particular, when f = 0, we have the dissipation inequality:

dE
dt

= − (∇u, τ )Ω ≤ 0. (84)

Remark 8. Theorem 2 together with Proposition 2 shows that the non-convex property is
regularized by the non-local differential operator. The v variable is the non-local entropy
variable for density. Here we do not directly perform the change-of-variable from ρ to v;
instead, we weakly define the entropy variable v in terms of ρ and u. Indeed, by resorting to
such a “weak” way of defining the entropy variable, we avoid the prohibitive computational
cost associated with inverting a differential operator.

3.2 Semi-discrete formulation

To perform spatial discretization of (69)-(71), we make use of the Galerkin method [36].
Let Vh1 ⊂ V1 and Vh2 ⊂ V2 be finite dimensional function spaces spanned by finite element
basis functions, where h-superscript denotes a mesh parameter. We approximate (69)-(71)
in space as follows:

Find ρh(t) ∈ L2
(
0, T ;Vh1

)
∩H1 (0, T ;L2(Ω)), u(t) = (u1(t), u2(t), u3(t))T ∈

(
L2
(
0, T ;Vh2

))3∩
(H1 (0, T ;L2(Ω)))

3
, and v(t) ∈ L2

(
0, T ;Vh1

)
, such that:(

qh1 ,
∂ρh

∂t

)
Ω

−
(
∇qh1 , ρhuh

)
Ω

= 0 ∀qh1 ∈ Vh1 , (85)(
qh,uh

∂ρh

∂t
+ ρh

∂uh

∂t

)
Ω

−
(
∇qh, ρhuh ⊗ uh

)
Ω

+
(
qh, ρh∇vh

)
Ω

+

(
qh, ρh∇|u

h|2

2

)
Ω

+
(
∇qh, τ (uh)

)
Ω

=
(
qh, ρf

)
Ω

∀qh = (qh2 , q
h
3 , q

h
4 )T ∈

(
Vh2
)3
, (86)(

qh5 , v
h
)

Ω
=

(
qh5 ,W

′
(ρh)− |u

h|2

2

)
Ω

+
1

We

(
∇qh5 ,∇ρh

)
Ω

∀qh5 ∈ Vh1 , (87)

with ρh(0) = ρh0 and uh(0) = uh0 in Ω.

Above, ρh0 and uh0 are L2-projections of ρ0(x), u0(x) onto Vh1 and (Vh2 )3 respectively. By
employing the same method as was used to prove Theorem 2, we can show that the semi-
discrete problem inherits the energy stability property of the strong form of the isothermal
Navier-Stokes-Korteweg equations.

20



Theorem 3. Solutions of the semi-discrete variational problem given by (85)-(87) verify the
nonlinear stability condition (55).

Remark 9. To guarantee discrete mass conservation, it is sufficient to require 1 ∈ Vh1 .

Remark 10. If Vh1 has the property

∀ρh ∈ Vh1 , ∇ρh ∈ (Vh1 )3, (88)

we have the following relation by performing integration by parts:∫
Ω

ρh∇vh + ρh∇|u
h|2

2
dx =

∫
Γ

ρh
(
vh −W ′

(ρh) +
|u|2

2
+

1

We
∆ρh

)
nds

+

∫
Ω

∇pdx−
∫

Ω

∇ · ςdx. (89)

If we further assume that ρh and vh satisfy periodic boundary conditions, the first boundary
integral becomes 0, and we have∫

Ω

ρh∇vh + ρh∇|u
h|2

2
dx =

∫
Γ

pn− ς · nds. (90)

The requirement (88) can be satisfied if Vh1 is spanned by trigonometric polynomials. There-
fore, if 1 ∈ Vh2 , ρ and v satisfy periodic boundary conditions, and we use a spectral method
based on trigonometric polynomials for Vh1 , we can obtain discrete momentum conservation.

Remark 11. Henceforth, we use the same discrete space (up to prescription of boundary
conditions) for ρh, uhi , i = 1, 2, 3, and vh, i.e. we assume that Vh1 = Vh2 = Vh.

Remark 12. We utilize Non-Uniform Rational B-Splines (NURBS) basis functions to de-
fine the discrete spaces. Making use of NURBS basis functions and the isoparametric concept
has led to the concept of Isogeometric Analysis. It has been shown that isogeometric analysis
possesses several advantages over traditional finite element methods in terms of approxima-
tion accuracy [19, 24], robustness [49], and mesh generation [4, 37]. Additionally, it has
been successfully applied to various fluid problems [5, 6, 25] and phase-field models [30, 32].
For a general discussion of isogeometric analysis, the reader is referred to [18].

3.3 Energy-stable time integration scheme for Isothermal Navier–
Stokes–Korteweg equations

Now that we have a provably energy-stable semi-discrete formulation, it remains to discretize
in time. As was mentioned previously in Section 1.2, the weighted residual form of the sym-
metrized Navier-Stokes equations in terms of classical entropy variables in conjunction with a
space-time formulation constitutes a fully discrete scheme which is provably unconditionally
stable-in-energy [58, 59]. Unfortunately, classical entropy variables do not comprise a viable
variable set in the context of a van der Waals fluid. Moreover, the stability of the space-time
formulation in the context of the symmetrized Navier-Stokes equations is contingent upon
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the fact that the Jacobian matrix describing the mapping from conservation variables to clas-
sical entropy variables is positive definite. In the context of the van der Waals fluid model,
the Jacobian matrix can be singular or even negative definite within the elliptic region. This
is due to the non-convexity of the classical mathematical entropy function within the elliptic
region.

Perhaps the simplest second-order time-marching scheme for time-dependent systems is
the mid-point rule. In fact, for some nonlinear systems such as the incompressible Navier-
Stokes equations, the application of the mid-point rule to a provably energy-stable semi-
discrete formulation will lead to a provably energy-stable fully discrete formulation. Unfor-
tunately, this is not true for the isothermal Navier-Stokes-Korteweg system studied here.
The primary issue in deriving a finite-difference time-discretization scheme for this system
lies with approximating the chemical potential at a particular time step. A simple evalua-
tion of the chemical potential using the mid-point rule is generally unstable. An alternative
and somewhat appealing methodology is inspired by the fact that the chemical potential is
precisely the derivative of the free energy function with respect to the density field. Hence,
one may approximate the chemical potential at time tn+1/2 = 1

2
(tn+1 + tn) using the finite

difference formula

µ(tn+1/2) ≈
W (ρhn+1)−W (ρhn)

ρhn+1 − ρhn
(91)

where ρhn and ρhn+1 are discrete approximations of the density field at time-steps tn and tn+1

respectively. Indeed, one can show that a time-marching scheme in which the above formula
is used to approximate the chemical potential while all other terms are approximated using a
variant of the mid-point rule is energy-stable and in fact energy-conservative in the inviscid
setting. Unfortunately, the finite difference approximation given by (91) is ill-defined when
ρn+1 = ρn and numerical tests have revealed it is unstable when ρn+1 ≈ ρn. When the free
energy function is polynomial, an equivalent and numerically stable representation of (91)
can be recovered using a truncated Taylor expansion of the form

W (ρhn+1)−W (ρhn)

ρhn+1 − ρhn
=

n∑
i=0

1

22i(2i+ 1)!

d2iµ
(
ρhn+1/2

)
dρ2i

JρhnK
2i (92)

where

JρhnK = ρhn+1 − ρhn and ρhn+1/2 =
1

2

(
ρhn + ρhn+1

)
, (93)

but in the non-polynomial setting, such an expansion results in fully discrete schemes which
are no longer provably energy-stable. Hence, one is left with the question: how can one
approximate the finite difference approximation given by (91) in such a manner that energy
stability is not upset? It turns out that one can do so by employing the following specialized
quadrature formulas which were introduced by Gomez and Hughes in [31] in order to develop
an energy-stable fully discrete scheme for the Cahn-Hilliard equation.

Lemma 2. (Perturbed trapezoidal rules) For a function f ∈ C3([a, b]), there exists ξ1, ξ2 ∈
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(a, b) such that the following quadrature formulas hold true

∫ b

a

f(x)dx =
b− a

2
(f(a) + f(b))− (b− a)3

12
f
′′
(a)− (b− a)4

24
f
′′′

(ξ1), (94)∫ b

a

f(x)dx =
b− a

2
(f(a) + f(b))− (b− a)3

12
f
′′
(b) +

(b− a)4

24
f
′′′

(ξ2). (95)

Proof. The original proof was given in the appendix of [31].

Using the above lemma, we can write

W (ρhn+1)−W (ρhn)

ρhn+1 − ρhn
=

1

ρhn+1 − ρhn

∫ ρh
n+1

ρh
n

W ′(ρ)dρ

=
1

ρhn+1 − ρhn

∫ ρh
n+1

ρh
n

µ(ρ)dρ

=
1

2
(µ(ρhn) + µ(ρhn+1))− JρhnK2

12
µ
′′
(ρhn)− JρhnK3

24
µ
′′′

(ρhn+ξ) (96)

for some ξ ∈ (0, 1) where ρhn+ξ = (1−ξ)ρhn+ξρhn+1. This inspires the following approximation

of the chemical potential at time tn+1/2 = 1
2

(tn+1 + tn):

µ(tn+1/2) ≈ 1

2
(µ(ρhn) + µ(ρhn+1))− JρhnK2

12
µ
′′
(ρhn). (97)

We see that the above approximation is a perturbation of the stable approximation given

in (91) by a factor of − Jρh
nK3

24
µ
′′′

(ρhn+ξ), and this in turn is a stable perturbation as the free
energy function for a van der Waal’s fluid is super-convex.

Remark 13. The quadrature formulas (94) and (95) can be viewed as a perturbation of
the trapezoidal rule. We note that there are other quadrature rules that can be utilized to
generate nonlinear stable numerical schemes as well. Two additional quadrature rules with
proofs and their application in the isothermal Navier-Stokes-Korteweg equations are given in
appendix A and B.

With the approximation given by (97), we are now ready to describe in full the proposed
time integration scheme. Let us assume that the time interval is I = (0, T ) is divided into
Nts subintervals In = (tn, tn+1), n = 0, · · · , Nts − 1. We use the notation ρhn+1, uhn+1 =
(uh1,n+1, u

h
2,n+1, u

h
3,n+1)T , and vhn+1 to represent the fully discrete solutions at time level n+ 1.

In each time step, given ρhn, uhn and vhn, we need to find ρhn+1, uhn+1 and vhn+1 such that for all
qh1 , qh5 ∈ Vh, and qh = (qh1 , q

h
2 , q

h
3 ) ∈ (Vh)3,
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BM(qh1 ; ρhn+1,u
h
n+1, v

h
n+1) :=

(
qh1 ,

JρhnK
∆tn

)
Ω

−
(
∇qh1 , ρhn+ 1

2
uh
n+ 1

2

)
Ω

= 0, (98)

BU(qh; ρhn+1,u
h
n+1, v

h
n+1) :=

(
qh,uh

n+ 1
2

JρhnK
∆tn

+ ρh
n+ 1

2

JuhnK
∆tn

)
Ω

−
(
∇qh, ρh

n+ 1
2
uh
n+ 1

2
⊗ uh

n+ 1
2

)
Ω

+
(
∇qh, τ (uh

n+ 1
2
)
)

Ω
+

(
qh, ρh

n+ 1
2
∇vhn+1 + ρh

n+ 1
2
∇(
|uh
n+ 1

2

|2

2
)

)
Ω

= 0, (99)

BE(qh5 ; ρhn+1,u
h
n+1, v

h
n+1) :=

(
qh5 , v

h
n+1

)
Ω
−
(
qh5 ,

1

2
(µ(ρhn) + µ(ρhn+1))− JρhnK2

12
µ
′′
(ρhn)

)
Ω

+

(
qh5 ,

2|uh
n+ 1

2

|2 − |uh|2
n+ 1

2

2

)
Ω

−
(
∇qh5 ,

1

We
∇ρhn+α

)
Ω

= 0, (100)

where

∆tn = tn+1 − tn, (101)

ρhn+α = ρhn + αJρhnK, (102)

α = 1/2 + η, (103)

η =
1

2
tanh(

∆tnWe
1
2

C
). (104)

As will become evident later, the parameter C appearing above is a non-dimensional constant
that can be used to adjust the dissipation of our proposed time integration scheme. The
quantity We1/2 in (104) will ensure that the dissipation varies according to the choices of
length scale L0. The following theorem states that our scheme is provably energy-stable,
mass-conservative, and second-order accurate in time.

Theorem 4. The fully discrete variational formulation (98)-(104) satisfies the following
properties:

(1) The scheme is mass-conservative, i.e.,∫
Ω

ρhndx =

∫
Ω

ρh0dx, ∀n = 1, · · · , Nts. (105)

(2) The scheme verifies the nonlinear stability condition

E(ρhn,u
h
n) ≤ E(ρhn−1,u

h
n−1), ∀n = 1, · · · , Nts. (106)

(3) The local truncation error in time τ(t) may be bounded by |τ(tn)| ≤ K∆t2n for all
tn ∈ [0, T ], where K is a constant independent of ∆tn.
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Proof. (1) Taking qh1 = 1 in equation (98), we obtain:(
1,

JρhnK
∆tn

)
Ω

=
1

∆t

(∫
Ω

ρhn+1dx−
∫

Ω

ρhndx

)
Ω

= 0. (107)

By induction, we have: ∫
Ω

ρhndx =

∫
Ω

ρh0dx. (108)

(2) As a result of (96), we have:

JW (ρhn)K
JρhnK

+
JρhnK3

24
µ
′′′

(ρhn+ξ) =
1

2
(µ(ρhn) + µ(ρhn+1))− JρhnK2

12
µ
′′
(ρhn) ξ ∈ (0, 1). (109)

Now let us take qh1 = vhn+1 in equation (98) and qh5 = JρhnK/∆tn in equation (100) to obtain(
vhn+1,

JρhnK
∆tn

)
Ω

−
(
∇vhn+1, ρ

h
n+ 1

2
uh
n+ 1

2

)
Ω

= 0 (110)

and (
JρhnK
∆tn

, vhn+1

)
Ω

−
(

JρhnK
∆tn

,
1

2
(µ(ρhn) + µ(ρhn+1))− JρhnK2

12
µ
′′
(ρhn)

)
Ω

+

(
JρhnK
∆tn

,
2|uh

n+ 1
2

|2 − |uh|2
n+ 1

2

2

)
Ω

−
(
∇JρhnK

∆tn
,

1

We
∇ρhn+α

)
Ω

= 0. (111)

Combining equations (110) and (111) by canceling the term
(
vhn+1,

Jρh
nK

∆tn

)
Ω

yields

(
∇vhn+1, ρ

h
n+ 1

2
uh
n+ 1

2

)
Ω
−
(

JρhnK
∆tn

,
1

2
(µ(ρhn) + µ(ρhn+1))− JρhnK2

12
µ
′′
(ρhn)

)
Ω

+

(
JρhnK
∆tn

,
2|uh

n+ 1
2

|2 − |uh|2
n+ 1

2

2

)
Ω

−
(
∇JρhnK

∆tn
,

1

We
∇ρhn+α

)
Ω

= 0. (112)

Due to the relation given by (109), the second term in (112) can be written as(
JρhnK
∆tn

,
1

2
(µ(ρhn) + µ(ρhn+1))− JρhnK2

12
µ
′′
(ρhn)

)
Ω

=

(
JρhnK
∆tn

,
JW (ρhn)K

JρhnK
+

JρhnK3

24
µ
′′′

(ρhn+ξ)

)
Ω

=

∫
Ω

JW (ρhn)K
∆tn

dx +

(
JρhnK
∆tn

,
JρhnK3

24
µ
′′′

(ρhn+ξ)

)
Ω

,

(113)

and the last term in (112) can be rewritten as(
∇JρhnK

∆tn
,

1

We
∇ρhn+α

)
Ω

=

(
∇JρhnK,

1

We∆tn
∇ρh

n+ 1
2

)
Ω

+

(
∇JρhnK,

η

We∆tn
∇JρhnK

)
Ω

=

∫
Ω

1

2We∆tn
J|∇ρh|2nKdx +

(
∇JρhnK,

η

We∆tn
∇JρhnK

)
Ω

. (114)
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Therefore, equation (112) can be rewritten as

(∇vhn+1, ρ
h
n+ 1

2
uh
n+ 1

2
)Ω −

(
JρhnK
∆tn

,
JρhnK3

24
µ
′′′

(ρhn+ξ)

)
Ω

+

(
JρhnK
∆tn

,
2|uh

n+ 1
2

|2 − |uh|2
n+ 1

2

2

)
Ω

−
∫

Ω

JW (ρhn)K
∆tn

dx−
∫

Ω

1

2We∆tn
J|∇ρh|2nKdx−

(
∇JρhnK,

η

We∆tn
∇JρhnK

)
Ω

= 0. (115)

Next, let us take qh = uh
n+ 1

2

in equation (99):

(
uh
n+ 1

2
,uh

n+ 1
2

JρhnK
∆tn

+ ρn+ 1
2

JuhnK
∆tn

)
Ω

− (∇uh
n+ 1

2
, ρn+ 1

2
un+ 1

2
⊗ un+ 1

2
)Ω + (∇uh

n+ 1
2
, τ (uh

n+ 1
2
))Ω

+

(
uh
n+ 1

2
, ρn+ 1

2
∇vhn+1 + ρn+ 1

2
∇(
|uh
n+ 1

2

|2

2
)

)
Ω

= 0. (116)

Subtracting (115) from (116) yields

− (∇vhn+1, ρ
h
n+ 1

2
uh
n+ 1

2
)Ω +

(
JρhnK
∆tn

,
JρhnK3

24
µ
′′′

(ρhn+ξ)

)
Ω

−

(
JρhnK
∆tn

,
2|uh

n+ 1
2

|2 − |uh|2
n+ 1

2

2

)
Ω

+

∫
Ω

JW (ρhn)K
∆tn

dx +

∫
Ω

1

2We∆tn
J|∇ρh|2nKdx +

(
∇JρhnK,

η

We∆tn
∇JρhnK

)
Ω

+

(
uh
n+ 1

2
,uh

n+ 1
2

JρhnK
∆tn

+ ρn+ 1
2

JuhnK
∆tn

)
Ω

− (∇uh
n+ 1

2
, ρn+ 1

2
un+ 1

2
⊗ un+ 1

2
)Ω + (∇uh

n+ 1
2
, τ (uh

n+ 1
2
))Ω

+

(
uh
n+ 1

2
, ρn+ 1

2
∇vhn+1 + ρn+ 1

2
∇(
|uh
n+ 1

2

|2

2
)

)
Ω

= 0. (117)

Noticing that

−

(
JρhnK
∆tn

,
2|uh

n+ 1
2

|2 − |uh|2
n+ 1

2

2

)
Ω

+

(
uh
n+ 1

2
,uh

n+ 1
2

JρhnK
∆tn

+ ρn+ 1
2

JuhnK
∆tn

)
Ω

=

∫
Ω

JρhnK|uh|2n+ 1
2

2∆tn
+
ρh
n+ 1

2

J|uh|2nK

2∆tn
dx

=

∫
Ω

1

∆tn
Jρhn
|uh|2n

2
Kdx (118)

and

(∇uh
n+ 1

2
, ρn+ 1

2
un+ 1

2
⊗ un+ 1

2
)Ω −

(
uh
n+ 1

2
, ρn+ 1

2
∇(
|uh
n+ 1

2

|2

2
)

)
Ω

= 0 (119)

− (∇vhn+1, ρ
h
n+ 1

2
uh
n+ 1

2
)Ω + (uh

n+ 1
2
, ρn+ 1

2
∇vhn+1)Ω = 0, (120)
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equation (117) implies

JE(ρhn,u
h
n)K

∆tn
=

1

∆tn

∫
Ω

Jρhn
|uh|2n

2
K + JW (ρhn)K +

1

2We
J|∇ρh|2nKdx

= −(∇uh
n+ 1

2
, τ (uh

n+ 1
2
))Ω −

(
JρhnK
∆tn

,
JρhnK3

24
µ
′′′

(ρhn+ξ)

)
Ω

−
(
∇JρhnK,

η

We∆tn
∇JρhnK

)
Ω

≤ 0. (121)

The last inequality is due to Proposition 1 and super-convexity, that is, µ
′′′

= W
′′′′
> 0.

(3) We consider the mid-point rule applied for the semi-discrete formulation (69)-(71):(
qh1 ,

JρhnK
∆t

)
Ω

−
(
∇qh1 , ρhn+ 1

2
uh
n+ 1

2

)
Ω

= 0, (122)(
qh,uh

n+ 1
2

JρhnK
∆tn

+ ρn+ 1
2

JuhnK
∆tn

)
Ω

−
(
∇qh, ρn+ 1

2
un+ 1

2
⊗ un+ 1

2

)
Ω

+
(
∇qh, τ (uh

n+ 1
2
)
)

Ω

+

(
qh, ρn+ 1

2
∇vhmid + ρn+ 1

2
∇(
|uh
n+ 1

2

|2

2
)

)
Ω

= 0, (123)

(
qh5 , v

h
mid

)
Ω
−
(
qh5 , µ(ρh

n+ 1
2
)
)

Ω
+

(
qh5 ,
|uh
n+ 1

2

|2

2

)
Ω

−
(
∇qh5 ,

1

We
∇ρh

n+ 1
2

)
Ω

= 0. (124)

The local truncation error associated with the mid-point rule can be obtained by replacing
the time discrete solution ρhn,u

h
n with the corresponding exact time continuous solution

ρh(tn),uh(tn) in the above equations and performing Taylor expansions:(
qh1 ,

Jρh(tn)K
∆t

)
Ω

−
(
∇qh1 , ρh(tn+ 1

2
)uh(tn+ 1

2
)
)

Ω
=
(
qh1 , $

mid
ρ

)
Ω
, (125)(

qh,uh(tn+ 1
2
)
Jρh(tn)K

∆tn
+ ρh(tn+ 1

2
)
Juh(tn)K

∆tn

)
Ω

−
(
∇qh, ρh(tn+ 1

2
)uh(tn+ 1

2
)⊗ uh(tn+ 1

2
)
)

Ω

+
(
∇qh, τ (uh(tn+ 1

2
))
)

Ω
+

(
qh, ρh(tn+ 1

2
)∇ṽhmid + ρh(tn+ 1

2
)∇(
|uh(tn+ 1

2
)|2

2
)

)
Ω

=
(
qh,$mid

u

)
Ω
,

(126)(
qh5 , ṽ

h
mid

)
Ω
−
(
qh5 , µ(ρh(tn+ 1

2
))
)

Ω
+

(
qh5 ,
|uh(tn+ 1

2
)|2

2

)
Ω

−
(
∇qh5 ,

1

We
∇ρh(tn+ 1

2
)

)
Ω

= 0,

(127)

where $mid
ρ and $mid

u are the local truncation errors. Assuming sufficient smoothness, Taylor
expansions of the time continuous solutions lead to

$mid
ρ = O(∆t2n), $mid

u = O(∆t2n)1. (128)
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This calculation verifies the second-order accuracy of the midpoint rule. Now we consider
our time discrete scheme (98)-(100). Replacing the time discrete solution with the time
continuous solution, we obtain the following:(

qh1 ,
Jρh(tn)K

∆t

)
Ω

−
(
∇qh1 , ρh(tn+ 1

2
)uh(tn+ 1

2
)
)

Ω
=
(
qh1 , $ρ

)
Ω
, (129)(

qh,uh(tn+ 1
2
)
Jρh(tn)K

∆tn
+ ρh(tn+ 1

2
)
Juh(tn)K

∆tn

)
Ω

−
(
∇qh, ρh(tn+ 1

2
)uh(tn+ 1

2
)⊗ uh(tn+ 1

2
)
)

Ω
+
(
∇qh, τ (uh(tn+ 1

2
))
)

Ω

+

(
qh, ρh(tn+ 1

2
)∇ṽh + ρh(tn+ 1

2
)∇(
|uh(tn+ 1

2
)|2

2
)

)
Ω

=
(
qh,$u

)
Ω
, (130)

(
qh5 , ṽ

h
)

Ω
−
(
qh5 ,

1

2

(
µ(ρh(tn)) + µ(ρh(tn+1))

))
Ω

−
(
qh5 ,

Jρh(tn)K2

12
µ
′′
(ρh(tn))

)
Ω

+

(
qh5 ,∇

2|uh(tn+ 1
2
)|2 − 1

2
(|uh(tn)|2 + |uh(tn+1)|2)

2

)
Ω

−
(
∇qh5 ,

1

We
∇ρh(tn+α)

)
Ω

= 0.

(131)

Assuming sufficient smoothness in time, Taylor series can be utilized to prove

1

2

(
µ(ρh(tn)) + µ(ρh(tn+1))

)
= µ(ρh(tn+ 1

2
)) +O(∆t2n), (132)

Jρh(tn)K2

12
µ
′′
(ρh(tn)) = O(∆t2n), (133)

2|uh(tn+ 1
2
)|2 − 1

2
(|uh(tn)|2 + |uh(tn+1)|2) = |uh(tn+ 1

2
)|2 +O(∆t2n), (134)

ρh(tn+α) = ρh(tn+ 1
2
) +O(η∆t). (135)

Considering that

η =
1

2
tanh

(
∆tWe

1
2

C

)
≤ ∆tWe

1
2

2C
, (136)

we conclude that

ρh(tn+α) = ρh(tn+ 1
2
) +O(∆t2n). (137)

Combining above results, it follows that(
qh1 , $ρ

)
Ω

=
(
qh1 , $

mid
ρ

)
Ω

+O(∆t2n), (138)(
qh,$u

)
Ω

=
(
qh,$mid

u

)
Ω

+O(∆t2n)1. (139)

Therefore, we have (
qh1 , $ρ

)
Ω

= O(∆t2n), (140)(
qh,$u

)
Ω

= O(∆t2n) (141)

which completes the proof.

28



Remark 14. According to the relations (138) and (139), we may view our scheme as a
second-order perturbation of the mid-point rule which achieves nonlinear stability.

Remark 15. From the relation (121), we see the energy dissipation associated with the
time integration scheme actually consists of two parts: physical dissipation and numerical
dissipation. The numerical dissipation will vanish if the time step approaches zero. When the
time step is large, the numerical dissipation terms will enhance the stability of the scheme.
Such a property makes our scheme very robust.

Remark 16. If we temporarily denote ∆̂tn and ∆tn as dimensionless time step scaled with
capillarity time scale

√
λ/(a2b) and dimensional time step, respectively, then the meaning

of the term ∆tnWe
1
2/C in (104) is revealed in the following relations by recalling (42) in

Section 2.2:

∆tnWe
1
2

C
=

∆̂tn
C

=
∆tn

C
√

λ
a2b

. (142)

Thus, in terms of the dimensional time step ∆tn, we see that the dimensionless expression
∆tnWe

1
2/C in fact does not depend on arbitrary scaling introduced by the non-dimensionalization.

This relation also indicates that the numerical dissipation introduced by the last term in (100)

is actually dictated by ∆̂tn, which is analogous to the design of numerical dissipation in [31].

Remark 17. From (136), we observe that the dimensionless parameter C can be used to
adjust the accuracy and robustness of our method. A larger value of C renders a more
accurate scheme, while a smaller value of C renders a more stable method. Unless otherwise
specified, the dimensionless parameter C is fixed to be 100.0 in all of our numerical examples.

Remark 18. It may be noted that the stability proof is valid for all η ≥ 0. If η = 0, the last
term in (121) does not produce numerical dissipation [33]. Positive η provides controllable
numerical dissipation through the value of C selected.

3.4 Numerical implementation

Let Cρ
n = {Cρ

n,A}
nb
A=1, Cu

n = {Cui
n }3

i=1, Cui
n = {Cui

n,A}
nb
A=1, and Cv

n = {Cv
n,A}

nb
A=1 denote the

vectors of control variables (discrete solution coefficients) for ρ, u, and v at time step tn,
where A is the control variable index and nb is the dimension of the discrete space Vh. If
{NA}nb

A=1 are the basis functions that span the discrete space Vh, we have

ρhn =

nb∑
A=1

Cρ
n,ANA, (143)

uhn = (uh1,n, u
h
2,n, u

h
3,n)T , (144)

uhi,n =

nb∑
A=1

Cui
n,ANA, (145)

vhn =

nb∑
A=1

Cv
n,ANA. (146)
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With the above notation defined, our fully discrete scheme may be implemented as follows:
given Cρ

n, Cu
n, and Cv

n, find Cρ
n+1, Cu

n+1, Cv
n+1, such that

QM
(
Cρ
n+1,C

u
n+1,C

v
n+1

)
= 0, (147)

QU
(
Cρ
n+1,C

u
n+1,C

v
n+1

)
= 0, (148)

QE
(
Cρ
n+1,C

u
n+1,C

v
n+1

)
= 0. (149)

The above residual vectors are defined in the following sense:

QM
(
Cρ
n+1,C

u
n+1,C

v
n+1

)
:= {QM

A

(
Cρ
n+1,C

u
n+1,C

v
n+1

)
}nb
A=1, (150)

QM
A

(
Cρ
n+1,C

u
n+1,C

v
n+1

)
:= BM(NA; ρhn+1,u

h
n+1, v

h
n+1), (151)

QU
(
Cρ
n+1,C

u
n+1,C

v
n+1

)
:= {QUi

(
Cρ
n+1,C

u
n+1,C

v
n+1

)
}3
i=1, (152)

QUi
(
Cρ
n+1,C

u
n+1,C

v
n+1

)
:= {QUi

A

(
Cρ
n+1,C

u
n+1,C

v
n+1

)
}nb
A=1, (153)

QUi
A

(
Cρ
n+1,C

u
n+1,C

v
n+1

)
:= BU(NAei; ρ

h
n+1,u

h
n+1, v

h
n+1), (154)

QE
(
Cρ
n+1,C

u
n+1,C

v
n+1

)
:= {QE

A

(
Cρ
n+1,C

u
n+1,C

v
n+1

)
}nb
A=1, (155)

QE
A

(
Cρ
n+1,C

u
n+1,C

v
n+1

)
:= BE(NA; ρhn+1,u

h
n+1, v

h
n+1). (156)

Equations (147)-(149) constitute a nonlinear system of algebraic equations that needs to be
solved at each time step. We solve the nonlinear system of equations by using the Newton-
Raphson method [51]. Specifically, the control variables {Cρ

n+1,C
u
n+1,C

v
n+1} at each time

step tn+1, with n = 0, · · · , Nts − 1, are obtained iteratively by means of the following two-
stage predictor-multicorrector algorithm.

Predictor stage: Set

Cρ
n+1,(0) = Cρ

n, (157)

Cu
n+1,(0) = Cu

n, (158)

Cv
n+1,(0) = Cv

n. (159)

Multicorrector stage: Repeat the following steps for j = 1, · · · , jmax:

1. Evaluate the control variables for density at the intermediate stage:

Cρ
n+α = Cρ

n + α
(
Cρ
n+1,(j−1) −Cρ

n

)
(160)

2. Assemble the residual vector of the nonlinear system using the j−1 stage solution and
the above intermediate stage solution:

QM
(j) := QM(Cρ

n+1,(j−1),C
u
n+1,(j−1),C

v
n+1,(j−1)), (161)

QU
(j) := QU(Cρ

n+1,(j−1),C
u
n+1,(j−1),C

v
n+1,(j−1)), (162)

QE
(j) := QE(Cρ

n+1,(j−1),C
u
n+1,(j−1),C

v
n+1,(j−1)). (163)
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3. Let ‖
(
QM

(j); Q
U
(j); Q

E
(j)

)
‖l2 denote the l2 norm of the 5nb × 1 vector

(
QM

(j); Q
U
(j); Q

E
(j)

)
.

If either one of the following criteria

‖
(
QM

(j); Q
U
(j); Q

E
(j)

)
‖l2

‖
(
QM

(0);Q
U
(0);Q

E
(0)

)
‖l2
≤ tolR, (164)

‖
(
QM

(j); Q
U
(j); Q

E
(j)

)
‖l2 ≤ tolA (165)

is satisfied for a prescribed tolerance tolR, tolA, set the control variables at time tn+1 as
Cρ
n+1 = Cρ

n+1,(j−1), Cu
n+1 = Cu

n+1,(j−1), Cv
n+1 = Cv

n+1,(j−1), and exit the multicorrector

stage; otherwise, continue to step 4. We remind the reader that the notations (164)
and (165) are non-dimensional.

4. Assemble the tangent matrix of the nonlinear system and solve the linear system of
equations:

K11,(j) =
∂QM(Cρ

n+1,(j−1),C
u
n+1,(j−1),C

v
n+1,(j−1))

∂Cρ
n+1,(j−1)

, (166)

K12,(j) =
∂QM(Cρ

n+1,(j−1),C
u
n+1,(j−1),C

v
n+1,(j−1))

∂Cu
n+1,(j−1)

, (167)

K13,(j) =
∂QM(Cρ

n+1,(j−1),C
u
n+1,(j−1),C

v
n+1,(j−1))

∂Cv
n+1,(j−1)

, (168)

K21,(j) =
∂QU(Cρ

n+1,(j−1),C
u
n+1,(j−1),C

v
n+1,(j−1))

∂Cρ
n+1,(j−1)

, (169)

K22,(j) =
∂QU(Cρ

n+1,(j−1),C
u
n+1,(j−1),C

v
n+1,(j−1))

∂Cu
n+1,(j−1)

, (170)

K23,(j) =
∂QU(Cρ

n+1,(j−1),C
u
n+1,(j−1),C

v
n+1,(j−1))

∂Cv
n+1,(j−1)

, (171)

K31,(j) =
∂QE(Cρ

n+1,(j−1),C
u
n+1,(j−1),C

v
n+1,(j−1))

∂Cρ
n+1,(j−1)

, (172)

K32,(j) =
∂QE(Cρ

n+1,(j−1),C
u
n+1,(j−1),C

v
n+1,(j−1))

∂Cu
n+1,(j−1)

, (173)

K33,(j) =
∂QE(Cρ

n+1,(j−1),C
u
n+1,(j−1),C

v
n+1,(j−1))

∂Cv
n+1,(j−1)

, (174)

K11,(j) K12,(j) K13,(j)

K21,(j) K22,(j) K23,(j)

K31,(j) K32,(j) K33,(j)

∆Cρ
n+1,(j)

∆Cu
n+1,(j)

∆Cv
n+1,(j)

 = −

QM
(j)

QU
(j)

QE
(j)

 . (175)
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5. Use the solutions to update the iterates as:

Cρ
n+1,(j) = Cρ

n+1,(j−1) + ∆Cρ
n+1,(j), (176)

Cu
n+1,(j) = Cu

n+1,(j−1) + ∆Cu
n+1,(j), (177)

Cv
n+1,(j) = Cv

n+1,(j−1) + ∆Cv
n+1,(j) (178)

and return to step 1.

Remark 19. The control variables Cρ
0 and Cu

0 are straightforwardly obtained from the initial
condition. We obtain the control variables Cv

0 by solving

(
qh5 , v

h
0

)
Ω

=

(
qh5 , µ

(
ρh0
)
− 1

2
|uh0 |2

)
Ω

+

(
∇qh5 ,

1

We
∇ρh0

)
Ω

(179)

This is a simple calculation because (179) is linear in vh0 and the coefficient matrix is the
Gram matrix determined by the basis functions. The solution at step n = 0 does not depend
on Cv

0 , however its value is necessary to initiate the predictor-corrector algorithm given by
(157)-(178).

Remark 20. We adopt the preconditioned GMRES algorithm [53] from PETSc [2] to solve
the linear system given by (175). In our experience, the additive Schwarz method performs
better than incomplete-LU factorization as a parallel preconditioner.

Remark 21. We use the consistent tangent matrix in all of our computations. For the
verification problems in Section 4, we set tolR = 10−9 and tolA = 10−11. For the application
simulations in Section 5, we set tolR = 10−3 and tolA = 10−6.

3.5 Interface width and refinement methodology

In a numerical simulation of a phase-field problem, it is required that the computational
mesh be sufficiently fine in order to resolve the diffuse interface. Otherwise, unphysical
oscillations may appear and pollute the numerical solution. In [22], it was shown that,
at a fixed temperature, the diffuse interface length scale for the isothermal Navier-Stokes-
Korteweg system is proportional to L0We−

1
2 . Based on this scaling argument, we propose

a criterion for choosing a proper simulation mesh size h. Assuming σ is a non-dimensional
positive constant and h is the non-dimensional characteristic length scale of the spatial mesh,
we require that h satisfy the following inequality:

h ≤ σ√
We

. (180)

For a given Weber number, this inequality indicates an upper bound for the size of a com-
putational mesh. For realistic problems where the interface width is often on the order of
a few nanometers, this inequality provides an estimate for local mesh sizes in the context
of adaptive refinement [54, 56]. In Section 5.1.1, we demonstrate through numerical experi-
mentation the importance of satisfying the mesh size criterion (180). In all other numerical
experiments in Section 4 and 5, we only employ computational meshes which satisfy (180).
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Finally, before proceeding, in order to obtain physically correct solutions in the vanishing
viscosity and capillarity limit, the following relationship

Re = βWe
1
2 , (181)

where β is a non-dimensional constant, must be satisfied [61, 47]. With the aim of capturing
the correct sharp interface limit solution, we will adopt such a relation in all of our later
numerical simulations.

Remark 22. Similar scaling arguments to those discussed above have been successfully ap-
plied to the numerical studies of phase-field models in [30, 31, 32]. Following the parameter
choices made in [32], we take σ = 1.0 and β = 2.0 in all of our simulations. All of the
meshes used in our calculations give rise to a characteristic spatial mesh length-scale defined
as

h =
1

2
max
i
V

1
d
i , (182)

where d is the number of spatial dimensions and Vi is the volume/area of the i-th element
such that (180) is satisfied, except for the example in Section 5.1.1 where we explore the
consequences of violating (180). In the context of NURBS-based isogeometric analysis, an
element is defined as a Bézier element [11], that is the volume/area between knots.

4 Numerical Examples

In this section, we present a selection of numerical examples to test the stability, accuracy,
and mass conservation properties of our numerical formulation.

4.1 Manufactured solution for code verification

For our first numerical example, we construct a one dimensional manufactured solution to
verify our code as well as the time accuracy of the time integration scheme given by(98)-(100).
In particular, we consider the manufactured solution

ρ = 0.6 + 0.1 sin(5πt) cos(3πx), (183)

u = sin(3πt) sin(2πx). (184)

Restricting our computations to the domain Ω = (0, 1), we observe that the manufactured
solution satisfies the boundary conditions given by (4) and (3). The force vector f is obtained
by substituting the above manufactured solution into equations (32)-(33). The dimensionless
parameters are fixed to be Re = 2.0×101 and We = 1.0×102. First, we compute the problem
with mesh size ∆x = 1/16, 1/32, 1/64, 1/128 and 1/256 for a fixed time step size of ∆t =
1.0×10−5 for polynomial degrees k

′
= 1, 2, and 3. The L2-errors of ρ and u, together with the

corresponding convergence rates of the errors at t = 0.1, are listed in Tables 1-3. Notice that

the L2-norm of the density and velocity errors optimally converges like O(∆x(k
′
+1)). These

are optimal convergence rates in L2. We want to mention that the deteriorated convergence
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rates for k
′

= 3 at ∆x = 1/256 are expected since the numerical errors are driven close to
machine precision at these spatial resolutions. Next, to analyze the behavior of the temporal
discretization, we fix the spatial mesh to consist of 104 linear, quadratic, and cubic elements
and calculate the discrete solution up to t = 1.0 with 20, 100, 200, 1000, and 2000 time steps.
The solution errors at t = 1.0 versus the number of time steps are listed in Tables 4-6. We see
that the numerical scheme exhibits second-order accuracy in time for all three polynomial
degrees.

Table 1: Spatial convergence rate at t = 0.1 with polynomial degree k′ = 1.

∆x 1/16 1/32 1/64 1/128 1/256
‖ρ− ρh‖L2(Ω) 9.94× 10−4 2.41× 10−4 5.97× 10−5 1.49× 10−5 3.72× 10−6

order - 2.04 2.01 2.00 2.00
‖u− uh‖L2(Ω) 3.74× 10−3 9.26× 10−4 2.31× 10−4 5.77× 10−5 1.44× 10−5

order - 2.01 2.00 2.00 2.00

Table 2: Spatial convergence rate at t = 0.1 with polynomial degree k′ = 2.

∆x 1/16 1/32 1/64 1/128 1/256
‖ρ− ρh‖L2(Ω) 1.00× 10−4 1.19× 10−5 1.46× 10−6 1.82× 10−7 2.28× 10−8

order - 3.07 3.03 3.00 3.00
‖u− uh‖L2(Ω) 2.36× 10−4 2.82× 10−5 3.47× 10−6 4.31× 10−7 5.37× 10−8

order - 3.07 3.02 3.01 3.00

Table 3: Spatial convergence rate at t = 0.1 with polynomial degree k′ = 3.

∆x 1/16 1/32 1/64 1/128 1/256
‖ρ− ρh‖L2(Ω) 8.75× 10−6 4.94× 10−7 3.02× 10−8 1.92× 10−9 3.94× 10−10

order - 4.15 4.03 3.98 2.28
‖u− uh‖L2(Ω) 1.38× 10−5 7.94× 10−7 4.87× 10−8 3.31× 10−9 1.35× 10−9

order - 4.12 4.03 3.88 1.29

4.2 Coalescence of two bubbles in the absence of gravity

In this example, we consider a problem with zero body force (i.e., f = 0) for the purpose of
examining the mass conservation and energy dissipation properties of our scheme. Specifi-
cally, we consider a vapor bubble dynamics problem that was originally studied in [32, 41].
In this example, two vapor bubbles of different radii are originally placed close to each other.
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Table 4: Temporal convergence rate at t = 1.0 with ∆x = 1.0× 10−4, polynomial degree k′

= 1.

∆t 5.0× 10−2 1.0× 10−2 5.0× 10−3 1.0× 10−3 5.0× 10−4

‖ρ− ρh‖L2(Ω) 7.35× 10−3 2.77× 10−4 6.90× 10−5 2.76× 10−6 6.93× 10−7

order - 2.04 2.00 2.00 1.99
‖u− uh‖L2(Ω) 1.74× 10−2 6.75× 10−4 1.68× 10−4 6.72× 10−6 1.67× 10−6

order - 2.02 2.01 2.00 2.01

Table 5: Temporal convergence rate at t = 1.0 with ∆x = 1.0× 10−4, polynomial degree k′

= 2.

∆t 5.0× 10−2 1.0× 10−2 5.0× 10−3 1.0× 10−3 5.0× 10−4

‖ρ− ρh‖L2(Ω) 7.35× 10−3 2.77× 10−4 6.90× 10−5 2.76× 10−6 6.90× 10−7

order - 2.04 2.00 2.00 2.00
‖u− uh‖L2(Ω) 1.74× 10−2 6.75× 10−4 1.68× 10−4 6.73× 10−6 1.68× 10−6

order - 2.02 2.00 2.00 2.00

Table 6: Temporal convergence rate at t = 1.0 with ∆x = 1.0× 10−4, polynomial degree k′

= 3.

∆t 5.0× 10−2 1.0× 10−2 5.0× 10−3 1.0× 10−3 5.0× 10−4

‖ρ− ρh‖L2(Ω) 7.35× 10−3 2.77× 10−4 6.90× 10−5 2.76× 10−6 6.90× 10−7

order - 2.04 2.00 2.00 2.00
‖u− uh‖L2(Ω) 1.74× 10−2 6.75× 10−4 1.68× 10−4 6.73× 10−6 1.68× 10−6

order - 2.02 2.00 2.00 2.00
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Capillarity and pressure forces then drive the two bubbles to merge together and form a
single vapor bubble in equilibrium.

For this example, the computational domain is set to be Ω = (0, 1)2. We use 2562

quadratic NURBS functions to discretize in space. The centers of the bubbles are originally
located at points C1 = (0.40, 0.50) and C2 = (0.78, 0.50). The radii of the bubbles are set to
be R1 = 0.25 and R2 = 0.10. We specify the diffuse interface between the vapor and liquid
phases via a hyperbolic tangent regularization [32]:

ρ0(x) = 0.10 + 0.25

[
tanh

(
d1(x)−R1

2

√
We

)
+ tanh

(
d2(x)−R2

2

√
We

)]
, (185)

where di(x) is the Euclidean distance between x and Ci, i = 1, 2. The initial velocities are
set to be zero, i.e. u = 0, and we simulate the coalescence process up to a final time of
t = 5.0. In our simulation, the dimensionless parameters are fixed to be Re = 5.12×102 and
We = 6.55× 104, which satisfy (180) and (181). To verify the time accuracy of our scheme,
we have employed an overkill solution with which to compare our numerical solution.

4.2.1 Mass conservation

Let us denote the discrete mass at the final time step tn = 5.0 as

mn =

∫
Ω

ρhndx, (186)

and the initial mass as

m0 =

∫
Ω

ρh0dx =

∫
Ω

ρ0(x)dx. (187)

We have computed the coalescence problem with time step sizes of ∆t = 2.50× 10−2, 1.25×
10−2, 6.25×10−3, 5.0×10−3, 2.5×10−3, and 1.25×10−3 and listed the corresponding maximum
norms of relative mass error in Table 7. Note that the maximum mass errors are on the order
of 10−12 which may be attributed to quadrature errors, the nonlinear solver tolerance and
round-off errors. This corroborates the mass conservation of the numerical scheme (98)-(100).

Table 7: Mass error of the two-bubble coalescence problem.

∆t 2.50× 10−2 1.25× 10−2 6.25× 10−3 5.00× 10−3 2.50× 10−3 1.25× 10−3

‖mn−m0

m0
‖l∞ 1.95× 10−12 1.97× 10−12 1.89× 10−12 1.96× 10−12 2.02× 10−12 2.06× 10−12

4.2.2 Energy dissipation

To verify the energy dissipation property of our scheme, we have calculated the discrete
energy associated with the numerical solution corresponding to time step sizes of ∆t =
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2.50× 10−2, 1.25× 10−2, 6.25× 10−3, and 2.50× 10−3. We have also computed the discrete
energy associated with an overkill solution corresponding to a time step size of ∆t = 2.5 ×
10−5. These discrete energies E(ρhn,u

h
n) are plotted against time in Figure 5. From the

figure, we observe that the energy monotonically decreases with time for each time step size.
Additionally, there is no visual difference between the different discrete energies. In Figure
6, we have plotted a detailed view of the discrete energy histories near t = 0.1. From this
figure, we can see that the difference between the numerical solution and the overkill solution
decreases with a reduction of time step size.

Figure 5: Coalescence of two bubbles: Evolution of the free energy calculated using provably
stable algorithm with different time steps.

4.2.3 Time accuracy

We calculate overkill solutions with ∆t = 2.50×10−5. Then we repeat the computation with
larger time steps ∆t = 2.50 × 10−2, 1.25 × 10−2, 6.25 × 10−3, 2.50 × 10−3, and 1.25 × 10−3.
The errors at t = 1.0, 2.0, 3.0, 4.0 and 5.0 are listed in Tables 8 - 12. In these five tables, we
may observe that the time accuracy for both density and velocity are second-order, which
confirms the theoretical estimate we gave previously. In figures 7-11, we depict the density
profile and the velocity field at time t = 1.0, 2.0, 3.0, 4.0 and 5.0.

5 Applications

In this section, we simulate three different benchmark problems to investigate the effective-
ness of our method as well as the validity of the Navier-Stokes-Korteweg model.
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Figure 6: Coalescence of two bubbles: Evolution of the free energy calculated using provably
stable algorithm with different time steps. Detailed view in the vicinity of t = 0.1.

Table 8: Convergence rate at t = 1.0.

∆t 2.50× 10−2 1.25× 10−2 6.25× 10−3 5.00× 10−3 2.50× 10−3 1.25× 10−3

‖ρ− ρh‖L2(Ω) 1.81× 10−4 4.57× 10−5 1.14× 10−5 7.32× 10−6 1.83× 10−6 4.57× 10−7

order - 1.99 2.00 1.99 2.00 2.00
‖u− uh‖L2(Ω) 3.56× 10−5 8.81× 10−6 2.20× 10−6 1.41× 10−6 3.52× 10−7 8.79× 10−8

order - 2.02 2.00 2.00 2.00 2.00

Table 9: Convergence rate at t = 2.0.

∆t 2.50× 10−2 1.25× 10−2 6.25× 10−3 5.00× 10−3 2.50× 10−3 1.25× 10−3

‖ρ− ρh‖L2(Ω) 5.75× 10−4 1.45× 10−4 3.65× 10−5 2.33× 10−5 5.83× 10−6 1.46× 10−6

order - 1.99 1.99 2.01 2.00 2.00
‖u− uh‖L2(Ω) 4.79× 10−5 1.21× 10−5 3.04× 10−6 1.94× 10−6 4.86× 10−7 1.21× 10−7

order - 1.98 2.00 2.00 2.00 2.00
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Table 10: Convergence rate at t = 3.0.

∆t 2.50× 10−2 1.25× 10−2 6.25× 10−3 5.00× 10−3 2.50× 10−3 1.25× 10−3

‖ρ− ρh‖L2(Ω) 8.21× 10−4 2.08× 10−4 5.21× 10−5 3.34× 10−5 8.34× 10−6 2.09× 10−6

order - 1.98 2.00 1.99 2.00 2.00
‖u− uh‖L2(Ω) 5.20× 10−5 1.33× 10−5 3.33× 10−6 2.13× 10−6 5.33× 10−7 1.33× 10−7

order - 1.97 1.99 2.00 2.00 2.00

Table 11: Convergence rate at t = 4.0.

∆t 2.50× 10−2 1.25× 10−2 6.25× 10−3 5.00× 10−3 2.50× 10−3 1.25× 10−3

‖ρ− ρh‖L2(Ω) 9.00× 10−4 2.28× 10−4 5.70× 10−5 3.65× 10−5 9.12× 10−6 2.28× 10−6

order - 1.98 2.00 2.00 2.00 2.00
‖u− uh‖L2(Ω) 3.54× 10−5 8.49× 10−6 2.24× 10−6 1.43× 10−6 3.58× 10−7 8.95× 10−8

order - 2.06 1.92 2.00 2.00 2.00

Table 12: Convergence rate at t = 5.0.

∆t 2.50× 10−2 1.25× 10−2 6.25× 10−3 5.00× 10−3 2.50× 10−3 1.25× 10−3

‖ρ− ρh‖L2(Ω) 1.10× 10−3 2.77× 10−4 6.92× 10−5 4.43× 10−5 1.11× 10−5 2.76× 10−6

order - 1.99 2.00 2.00 2.00 2.00
‖u− uh‖L2(Ω) 3.56× 10−5 8.98× 10−6 2.25× 10−6 1.44× 10−6 3.59× 10−7 8.96× 10−8

order - 1.99 2.00 2.00 2.00 2.00

39



Figure 7: Solution at t = 1.0: (left) density distribution, (right) velocity field.

Figure 8: Solution at t = 2.0: (left) density distribution, (right) velocity field.
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Figure 9: Solution at t = 3.0: (left) density distribution, (right) velocity field.

Figure 10: Solution at t = 4.0: (left) density distribution, (right) velocity field.
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Figure 11: Solution at t = 5.0: (left) density distribution, (right) velocity field.

5.1 Traveling wave problem

The traveling wave problem is one of the few benchmark problems that possesses a firm
mathematical foundation [8]. It is frequently used to assess the accuracy and robustness
of numerical schemes for conservation laws. As is well-known, poorly-designed numerical
schemes will result in approximate solutions characterized by overshoots, undershoots, and
incorrect propagation speeds of waves in the presence of sharp layers or discontinuities.
Here, we consider traveling wave solutions to the one-dimensional Navier-Stokes-Korteweg
equations. We restrict ourselves to the domain (0, 1) and set the initial conditions as

ρ0(x) =
ρright + ρleft

2
+
ρright − ρleft

2
tanh

(
x− 0.5

2

√
We

)
, (188)

u0(x) =
uright + uleft

2
+
uright − uleft

2
tanh

(
x− 0.5

2

√
We

)
. (189)

Periodic boundary conditions are imposed on an extended region (−1, 1).

5.1.1 Stationary wave problem

We begin by considering a stationary wave problem. By applying the initial conditions

(ρright, uright) = (0.602, 0.0), (ρleft, uleft) = (0.107, 0.0), (190)

we obtain a stationary wave centered at x = 0.5 which sharpens as time evolves. This is
due to the fact that the initial velocity field is zero and the initial density profile satisfies
the Maxwell states (43)-(44) as well as the Rankine-Hugoniot conditions [26]. We choose
the Reynolds number to be 2.0× 102 and the Weber number to be 1.0× 104. The problem
is simulated using linear, quadratic, and cubic NURBS for ∆x = 1.0 × 10−2 up to a final
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Figure 12: Solution of the stationary wave problem at t = 0.1 using linear, quadratic, and
cubic NURBS for ∆x = 1.0× 10−2, ∆t = 1.0× 10−6, Re = 2.0× 102, and We = 1.0× 104.

Figure 13: Solution of the stationary wave problem at t = 0.1 for Weber numbers 1.0× 102,
1.0× 104, and 1.0× 106 when ∆x = 1.0× 10−2, ∆t = 1.0× 10−6, and Re = 2.0× 102.
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Figure 14: Solution of the propagating wave problem at t = 0.2 for time step sizes of
∆t = 5.0× 10−3, ∆t = 1.0× 10−2, ∆t = 2.0× 10−2, and ∆t = 1.0× 10−6 (reference solution)
when ∆x = 1.0× 10−2, Re = 2.0× 102, and We = 1.0× 104.

time of t = 0.1 using a time step size of ∆t = 1.0 × 10−6. The resulting density profiles
are illustrated in Figure 12. We can see from the figure that the differences between the
numerical solutions and the exact solution are indistinguishable for all three polynomial
degrees. Another important feature is that all three numerical solutions are smooth without
oscillations.

We next compare the effect of capillarity on our approximation of the stationary wave
problem. We use this example to illustrate the importance of the mesh choice criterion
(180). We discretize in space using a quadratic NURBS basis and fix the spatial mesh size
to be ∆x = 1.0 × 10−2. The temporal integration is performed up to t = 0.1 with a step
size of ∆t = 1.0 × 10−6. The Reynolds number is fixed to be 2.0 × 102. In Figure 13, we
have plotted the numerical solution for Weber numbers 1.0 × 102, 1.0 × 104, and 1.0 × 106

respectively. For We = 1.0 × 102 and 1.0 × 104, the criterion given by (180) is satisfied
and the obtained numerical solutions are smooth and without oscillations. We may also
observe that the interface width for We = 1.0 × 102 is of the order O(1), while that for
We = 1.0 × 104 is of the order O(0.1). These observations match well with the interface
width estimate made in [22]. For We = 1.0 × 106, the mesh size criterion (180) is upset.
Spikes and oscillations are observed near a very sharp phase boundary, which is harmful for
long time simulations. Indeed, this example indicates that the satisfaction of criterion (180)
is necessary for providing non-oscillatory results.
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5.1.2 Propagating wave problem

We next consider a propagating wave problem. To do so, we set the initial conditions to be

(ρright, uright) = (0.602, 1.0), (ρleft, uleft) = (0.107, 1.0). (191)

In this setting, a propating traveling solution will form, moving in the positive x direction at
speed 1.0. We fix the spatial discretization to consist of quadratic NURBS basis functions
and we fix the spatial mesh size to be ∆x = 1.0× 10−2, and the dimensionless quantities are
taken as Re = 2.0× 102 and We = 1.0× 104. We perform temporal integration up to t = 0.2
with time step sizes of ∆t = 5.0× 10−3, ∆t = 1.0× 10−2, and ∆t = 2.0× 10−2. Notice that
the characteristic speeds of this problem are u±

√
dp/dρ. The CFL number C is defined as

C = max
ρ∈[0.602,0.107]

{
u±

√
dp

dρ

}
∆t

∆x
= 162.1∆t. (192)

Thus, the corresponding CFL numbers are 0.81, 1.62, and 3.24. We observe that correct
traveling waves are captured at all three CFL numbers. Oscillations are seen for C ≥ 1. For
even larger time steps, there is the counterbalancing effect of even more numerical dissipation
being introduced and the computed solution becomes more diffusive, as can be seen in Figure
14.

5.2 Bubble dynamics on an annular surface

As a second benchmark problem, we solve the Navier-Stokes-Korteweg equations on an an-
nular surface to study vapor bubble dynamics on a curved geometry. There are several
objectives of this study. First of all, we want to research the effects of the capillarity and
the pressure force on bubble dynamics. According to thermodynamic considerations [29],
inward-pointing pressure gradients exist at the surface of smaller bubbles due to capillarity
effects. These pressure gradients cause smaller bubbles to disappear in favor of larger ones.
Therefore, small bubbles are considered thermodynamically unstable. A closely related phe-
nomenon is known as Ostwald’s ripening [50]. Using the van der Waals model, we endeavor
to obtain insight on such an important thermodynamic phenomenon. Our second objective
is to show the geometrical and topological flexibility of isogeometric analysis. The annular
surface is a common engineering geometry, yet it is hard to represent exactly within tradi-
tional numerical frameworks such as finite differences or finite elements. Specifically finite
difference or finite element methods usually approximate annular geometries using polyhe-
dral grids or elements, inevitably introducing approximation errors due to geometry. This
geometric approximation error may introduce erroneous numerical mass sources, which in
turn may deteriorate the conservation properties of a given numerical scheme. By employ-
ing NURBS-based isogeometric analysis, we are able to exactly represent the geometry of
the annular surface. Such an exact representation will play a critical role in retaining the
nonlinear stability and mass conservation properties of our fully discrete scheme.

The interior radius of the annular surface is taken to be rin = 0.1, while the exterior radius
is taken as rex = 2.0. To parametrize the annular surface using NURBS, we employ the
square-based NURBS construction of degree two outlined in [10, 18]. In the circumferential
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(a) Initial condition (b) t = 3.0

(c) t = 5.0 (d) t = 10.0

(e) t = 20.0 (f) t = 55.0

Figure 15: Vapor bubble dynamics on an annular surface.
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Figure 16: The evolution of total energy for vapor bubble dynamics on an annular surface.
The total energy is monotonically decreasing in time.

direction, 513 uniform quadratic NURBS are used for spatial discretization, and in the radial
direction, 120 uniform quadratic NURBS are used. In the circumferential direction, periodic
boundary conditions are imposed for all variables. On the interior and exterior circular
boundaries, the boundary condition (3) is imposed weakly as a natural boundary condition
while the no-slip boundary condition (4) is imposed strongly on the velocity field. The initial
bubble distribution is chosen randomly. That is, for nbub bubbles at the initial stage, the
bubble centers Ci, i = 1, · · · , nbub are generated randomly within the annular surface. The
bubble radii Ri, i = 1, · · · , nbub are also generated randomly in such a manner that each
bubble does not overlap with any other bubble nor cross the annular boundary. We take
nbub = 24 in our case. If we define dj(x) as the Euclidean distance between x and Cj, the
initial density profile reads

ρ0(x) =
n∑
j=1

tanh

(
dj(x)−Rj

2

√
We

)
− 0.25nbub + 0.6. (193)

The initial velocity field is set to be zero. The dimensionless parameters are fixed as Re =
1.372× 102 and We = 4.705× 103. A fixed time step size of ∆t = 1.0× 10−4 is used for time
integration. In Figure 15, we provide snapshots of the density profile at different times. The
physical process simulated here is similar to the two-bubble dynamics problem we studied in
Section 4.2. Small bubbles merge into large bubbles. After enough time has passed, all 24
bubbles will have merged together and formed one large vapor bubble. In Figure 16 we plot
the evolution of total energy over time. This figure shows the total energy is monotonically
decreasing with respect to time, again verifying the stability of our algorithm. We have
also computed the mass error. Following the notation defined in (186) and (187), we have
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‖mn−m0

m0
‖l∞ = 7.707× 10−9.

5.3 Liquid droplet on a solid substrate

As a final benchmark problem, we study the wetting phenomenon. The wetting phenomenon,
which describes the shape of a liquid droplet on a solid substrate, is a challenging problem in
fluid mechanics. This problem involves the interaction between three interfaces: the liquid-
vapor interface, the liquid-solid interface, and the vapor-solid interface. The shape of the
liquid droplet is primarily determined by two factors: (1) the contact angle of the droplet
with the solid substrate and (2) the Bond number Bo. The size of the contact angle varies
depending on whether the surface is hydrophilic or hydrophobic to the fluid. In our model,
this contact angle is enforced as a wall boundary condition

− ∇ρ
‖∇ρ‖

· n = cosϕ, (194)

at the wetted surface, where ϕ is the contact angle. On the other hand, the Bond number
assesses the relative importance of the gravity force against the surface tension. If the Bond
number is small, the surface tension dominates and the droplet will contract like a sphere. If
the Bond number is larger, the gravity force, being the dominant effecting force, will flatten
the droplet like a pancake. The wetting phenomenon for two immiscible fluids, e.g. water
and air, has been studied in depth both theoretically [29] and numerically [39, 68]. However,
the wetting phenomenon of a single material in liquid-vapor phase on a solid substrate has
not been the focus of as much study. In [22], the author considered the effects of different
contact angle boundary conditions on the shape of the droplet. In our work, we will focus
on the effect of the Bond number by fixing the contact angle to be π/2.

For our simulations, we restrict the computational domain to be the unit square Ω =
(0, 1)2. Our spatial discretizations are comprised of 3002 quadratic NURBS basis functions.
The dimensionless quantities are fixed to be Re = 848.53 and We = 1.80× 105 with criteria
(180) and (181) satisfied. The initial density profile is set as

ρ0(x) = 0.35− 0.25 tanh

(
d(x)− 0.2

2

√
We

)
, (195)

d(x) =
√

(x1 − 0.5)2 + x2
2. (196)

We set the volumetric force f to point in the negative y direction with magnitude |f| =
1.0×10−3, 1.0×10−2, 2.0×10−2, and 5.0×10−2. Recalling the relation (28), this means the
corresponding Bond numbers Bo are 1.8×102, 1.8×103, 3.6×103, and 9.0×103 respectively.
We simulate the wetting phenomenon up to a final time of t = 20.0 with a fixed time step
size of ∆t = 4.0× 10−5. The corresponding density profiles at t = 20.0 are plotted in Figure
17-20.

We can observe from the four figures that the magnitude of Bond number has a signifi-
cant impact on the shape of the droplet. In Figure 17, the Bond number is relatively small
and hence capillarity dominates. The strong surface tension tries to maintain curvature and
makes the droplet almost a spherical cap. In contrast, in Figure 20, the Bond number is
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50 times larger, and the gravitational force has a significant impact on the droplet. Con-
sequently, the droplet is flattened as we expected. Intermediate shapes are obtained for
Bo = 1.8× 103 and 3.6× 103.

Figure 17: Solution of liquid droplet on solid surface at t = 20.0 with |f| = Bo/We =
1.0× 10−3.

6 Conclusions

In this paper, we introduced a new energy-stable and second-order time-accurate scheme
for the Navier-Stokes-Korteweg equations. The spatial discretization of this new scheme is
based on a new functional definition of entropy variables. The temporal discretization is
based on a recently introduced second-order time integration method which has its roots in
numerical quadrature. We provided proofs of nonlinear stability, time accuracy, and mass
conservation, and we numerically verified these properties using the method of manufactured
solutions as well as comparing our numerical solutions with overkill solutions. We also
simulated a variety of benchmark problems to investigate the effectiveness of our method.
In particular, we successfully simulated vapor bubble dynamics on an annular surface with
the aid of isogeometric analysis, and we investigated the effect of Bond number on the shape
of a liquid droplet on a solid substrate.
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Figure 18: Solution of liquid droplet on solid surface at t = 20.0 with |f| = Bo/We =
1.0× 10−2.

Figure 19: Solution of liquid droplet on solid surface at t = 20.0 with |f| = Bo/We =
2.0× 10−2.
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Figure 20: Solution of liquid droplet on solid surface at t = 20.0 with |f| = Bo/We =
5.0× 10−2.
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A Rectangular quadrature rules and a first-order non-

linear stable scheme

In this section, we review the well-known rectangular quadrature formulas, and show how
they may be applied to generate a nonlinear stable first-order scheme, which has a close link
to Eyre’s method [27]. We first state the quadrature formulas in the following lemma.

Lemma 3. (Rectangular quadrature rules) For a function f ∈ C1([a, b]), there exists ξ1, ξ2 ∈
(a, b) such that the following quadrature rules hold true

∫ b

a

f(x)dx = (b− a)f(a) +
(b− a)2

2
f
′
(ξ1), (197)∫ b

a

f(x)dx = (b− a)f(b)− (b− a)2

2
f
′
(ξ2). (198)
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Proof. We consider functions F (x) and G(x) defined as follows:

F (x) =

∫ x

a

f(s)ds, (199)

G(x) =

∫ x

b

f(s)ds. (200)

Taylor expansion of F (x) at a and G(x) at b leads to

F (x) = F (a) + (x− a)f(a) +
(x− a)2

2
f
′
(ξ̂1)

= (x− a)f(a) +
(x− a)2

2
f
′
(ξ̂1), ξ̂1 ∈ (a, b); (201)

G(x) = G(b) + (x− b)f(b) +
(x− b)2

2
f
′
(ξ̂2)

= (x− b)f(b) +
(x− b)2

2
f
′
(ξ̂2), ξ̂2 ∈ (a, b), (202)

where ξ̂1 and ξ̂2 depend on x. Specifically, if we take x = b for F (x), and x = a for G(x), we
have ∫ b

a

f(x)dx = F (b) = (b− a)f(a) +
(b− a)2

2
f
′
(ξ1), ξ1 ∈ (a, b); (203)∫ b

a

f(x)dx = −G(a) = (b− a)f(b)− (b− a)2

2
f
′
(ξ2), ξ2 ∈ (a, b). (204)

Despite the low-order accuracy of the rectangular quadrature rules, they are useful for con-
structing a nonlinear stable time integration scheme, as will be shown here. We first split
the free energy W (ρ) into a convex part and a concave part, i.e.,

W (ρ) = W1(ρ) +W2(ρ), (205)

where W
′′
1 (ρ) ≥ 0 and W

′′
2 (ρ) ≤ 0. The corresponding chemical potentials are denoted as

µ1(ρ) = W
′
1(ρ) and µ2(ρ) = W

′
2(ρ). Then we have the following identity:

W (ρhn+1)−W (ρhn)

ρhn+1 − ρhn
=

1

ρhn+1 − ρhn

∫ ρh
n+1

ρh
n

(
W

′

1(ρ) +W
′

2(ρ)
)
dρ

=
1

ρhn+1 − ρhn

∫ ρh
n+1

ρh
n

(µ1(ρ) + µ2(ρ)) dρ

= µ1(ρhn+1) + µ2(ρhn)− JρhnK
2

(
µ
′

1(ρhn+ξ1
)− µ′2(ρhn+ξ2

)
)
, (206)

where ξ1, ξ2 ∈ (0, 1). Note, µ
′
1(ρn+ξ1) − µ

′
2(ρn+ξ2) is always positive due to the splitting.

Adopting the same notation as is used in Section 3.3, we state the fully discrete scheme as
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follows. In each time step, given ρhn, uhn and vhn, we need to find ρhn+1, uhn+1 and vhn+1 such
that for all qh1 , qh5 ∈ Vh, and qh = (qh1 , q

h
2 , q

h
3 ) ∈ (Vh)3,

BM(qh1 ; ρhn+1,u
h
n+1, v

h
n+1) :=

(
qh1 ,

JρhnK
∆tn

)
Ω

−
(
∇qh1 , ρhn+ 1

2
uh
n+ 1

2

)
Ω

= 0, (207)

BU(qh; ρhn+1,u
h
n+1, v

h
n+1) :=

(
qh,uh

n+ 1
2

JρhnK
∆tn

+ ρh
n+ 1

2

JuhnK
∆tn

)
Ω

−
(
∇qh, ρh

n+ 1
2
uh
n+ 1

2
⊗ uh

n+ 1
2

)
Ω

+
(
∇qh, τ (uh

n+ 1
2
)
)

Ω
+

(
qh, ρh

n+ 1
2
∇vhn+1 + ρh

n+ 1
2
∇(
|uh
n+ 1

2

|2

2
)

)
Ω

= 0, (208)

BE(qh5 ; ρhn+1,u
h
n+1, v

h
n+1) :=

(
qh5 , v

h
n+1

)
Ω
−
(
qh5 , µ1(ρhn+1) + µ2(ρhn)

)
Ω

+

(
qh5 ,

2|uh
n+ 1

2

|2 − |uh|2
n+ 1

2

2

)
Ω

−
(
∇qh5 ,

1

We
∇ρhn+α

)
Ω

= 0. (209)

Following the same manner as in the proof of Theorem 4, we may obtain a dissipation relation
for this scheme:

JE(ρhn,u
h
n)K

∆tn
=

1

∆tn

∫
Ω

Jρhn
|uh|2n

2
K + JW (ρhn)K +

1

2We
J|∇ρh|2nKdx

=− (∇uh
n+ 1

2
, τ (uh

n+ 1
2
))Ω −

(
JρhnK2

2∆tn
,
(
µ
′

1(ρn+ξ1)− µ
′

2(ρn+ξ2)
))

Ω

−
(
∇JρhnK,

η

We∆tn
∇JρhnK

)
Ω

≤ 0. (210)

The term
(
qh5 , µ1(ρhn+1) + µ2(ρhn)

)
Ω

is only a first-order approximation of
(
qh5 ,W

′
(ρh)

)
. There-

fore, (207)-(209) leads to a first-order, nonlinear stable scheme for the isothermal Navier-
Stokes-Korteweg equations.

Remark 23. If we apply the rectangular quadrature rules for the Cahn-Hilliard equation
within the framework of [31], the resulting first-order nonlinear stable scheme is actually the
Eyre’s scheme [27], which has enjoyed significant popularity in the phase-field community.
However, we note that Eyre’s method is restricted to gradient flow problems. Using the
rectangular quadrature formulas enables us to extend Eyre’s method to more general settings,
such as the Navier-Stokes-Korteweg equations.

Remark 24. A convex-concave splitting of the free energy function W of the van der Waals
fluid is:

W1 =
8

27
θρ log

(
ρ

1− ρ

)
, (211)

W2 =− ρ2. (212)

This can be used in (205) as a basis for the first-order stable scheme.
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B A pair of perturbed mid-point quadrature rules and

a second-order nonlinear stable scheme

Lemma 4. (Perturbed mid-point rules) For a function f ∈ C3([a, b]), there exists ξ1, ξ2 ∈
(a, b) such that the following quadrature rules hold true∫ b

a

f(x)dx = (b− a)f(
a+ b

2
) +

(b− a)3

24
f
′′
(a) +

(b− a)4

48
f
′′′

(ξ1), (213)∫ b

a

f(x)dx = (b− a)f(
a+ b

2
) +

(b− a)3

24
f
′′
(b)− (b− a)4

48
f
′′′

(ξ2). (214)

Proof. Let P (x) be a quadratic polynomial satisfying

P (
a+ b

2
) = f(

a+ b

2
), P

′
(
a+ b

2
) = f

′
(
a+ b

2
), P

′′
= f

′′
(a). (215)

Let us denote R(x) as R(x) = f(x)− P (x), and we may rewrite R(x) as

R(x) = w(x)S(x), (216)

w(x) = (x− a+ b

2
)2(x− 2a+ b). (217)

According to l’Hôspital’s rule,

lim
x→a+b

2

S(x) =
R
′′
(a+b

2
)

3(b− a)
=
f
′′
(a+b

2
)− P ′′

3(b− a)
=
f
′′
(a+b

2
)− f ′′(a)

3(b− a)
=
f
′′′

(a+ ζ)

6
, (218)

for ζ ∈ (0, (b − a)/2). Therefore, S(x) is well-defined in (a, b). Consider a function F (z) =
f(z)− P (z)− w(z)S(x), with x ∈ (a, b), x 6= a+b

2
fixed. Apparently, F (z) satisfies

F (
a+ b

2
) = F

′
(
a+ b

2
) = F

′′
(a) = F (x) = 0. (219)

Applying Rolle’s rule three times, we may find that there exists θ ∈ (a, b) such that F
′′′

(θ) =
0. Therefore,

f
′′′

(θ)− P ′′′
(θ)− w′′′

(θ)S(x) = 0 (220)

⇒ S(x) =
f
′′′

(θ)

w′′′(θ)
=
f
′′′

(θ)

6
. (221)

Relations (218) and (221) imply that there exist θ ∈ (a, b) such that S(x) = f
′′′

(θ)/6 for
∀x ∈ (a, b). Considering the integration of f(x) over (a, b), we have∫ b

a

f(x)dx =

∫ b

a

P (x)dx+

∫ b

a

w(x)S(x)dx. (222)
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It is easy to verify that w(x) does not change its sign in (a, b), therefore, the mean value
theorem implies

∫ b

a

w(x)S(x)dx =

∫ b

a

w(x)
f
′′′

(θ)

6
dx =

f
′′′

(ξ1)

6

∫ b

a

w(x)dx =
f
′′′

(ξ1)

48
(b− a)4. (223)

Also, we may obtain an explicit form of P (x) by solving the equations (215), and we have

∫ b

a

P (x)dx = (b− a)f(
a+ b

2
) +

(b− a)3

24
f
′′
(a). (224)

Combing the results (223) and (224), we have

∫ b

a

f(x)dx = (b− a)f(
a+ b

2
) +

(b− a)3

24
f
′′
(a) +

(b− a)4

48
f
′′′

(ξ1), (225)

which proved the first quadrature formula (213). The proof for the second formula (214)
follows the same manner by choosing P (x) satisfying

P (
a+ b

2
) = f(

a+ b

2
), P

′
(
a+ b

2
) = f

′
(
a+ b

2
), P

′′
= f

′′
(b), (226)

and

w(x) = (x− a+ b

2
)2(x− 2b+ a). (227)

Since the free energy function is super-convex for the van der Waals fluid, we only need
(214) to approximate W

′
(ρh),

W (ρhn+1)−W (ρhn)

ρhn+1 − ρhn
=

1

ρhn+1 − ρhn

∫ ρh
n

ρh
n+1

W
′
(ρ)dρ

=
1

ρhn+1 − ρhn

∫ ρh
n

ρh
n+1

µ(ρ)dρ

=µ(ρh
n+ 1

2
) +

JρhnK2

24
µ
′′
(ρhn+1)− JρhnK3

48
µ
′′′

(ρhn+ξ), (228)

where ξ ∈ (0, 1). Adopting the notations in Section 3.3, we state a fully discrete scheme
based on the perturbed mid-point rule. In each time step, given ρhn, uhn and vhn, we need to
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find ρhn+1, uhn+1 and vhn+1 such that for all qh1 , qh5 ∈ Vh, and qh = (qh1 , q
h
2 , q

h
3 ) ∈ (Vh)3,

BM(qh1 ; ρhn+1,u
h
n+1, v

h
n+1) :=

(
qh1 ,

JρhnK
∆tn

)
Ω

−
(
∇qh1 , ρhn+ 1

2
uh
n+ 1

2

)
Ω

= 0, (229)

BU(qh; ρhn+1,u
h
n+1, v

h
n+1) :=

(
qh,uh

n+ 1
2

JρhnK
∆tn

+ ρh
n+ 1

2

JuhnK
∆tn

)
Ω

−
(
∇qh, ρh

n+ 1
2
uh
n+ 1

2
⊗ uh

n+ 1
2

)
Ω

+
(
∇qh, τ (uh

n+ 1
2
)
)

Ω
+

(
qh, ρh

n+ 1
2
∇vhn+1 + ρh

n+ 1
2
∇(
|uh
n+ 1

2

|2

2
)

)
Ω

= 0, (230)

BE(qh5 ; ρhn+1,u
h
n+1, v

h
n+1) :=

(
qh5 , v

h
n+1

)
Ω
−
(
qh5 , µ(ρh

n+ 1
2
) +

JρhnK2

24
µ
′′
(ρhn+1)

)
Ω

+

(
qh5 ,

2|uh
n+ 1

2

|2 − |uh|2
n+ 1

2

2

)
Ω

−
(
∇qh5 ,

1

We
∇ρhn+α

)
Ω

= 0. (231)

Following the same procedure as of the proof of Theorem 4, we may derive a discrete dissi-
pation estimate for the scheme (229)-(231):

JE(ρhn,u
h
n)K

∆tn
=

1

∆tn

∫
Ω

Jρhn
|uh|2n

2
K + JW (ρhn)K +

1

2We
J|∇ρh|2nKdx

=− (∇uh
n+ 1

2
, τ (uh

n+ 1
2
))Ω −

(
JρhnK4

∆tn
,

1

48
µ
′′′

(ρhn+ξ)

)
Ω

−
(
∇JρhnK,

η

We∆tn
∇JρhnK

)
Ω

≤ 0. (232)

Taylor’s expansion may show that the fully discrete scheme (229)-(231) is second-order ac-
curate in time.

Remark 25. Comparing the discrete dissipation relations (121) and (232), we notice that
when η = 0, the numerical dissipation introduced by the scheme (98)-(100) is∫

Ω

JρhnK4

24∆tn
µ
′′′

(ρh
n+ξ̂

)dx, (233)

while the numerical dissipation introduced by the scheme (229)-(231) is∫
Ω

JρhnK4

48∆tn
µ
′′′

(ρh
n+ξ̃

)dx. (234)

Since it is hard to compare the value of µ
′′′

(ρh
n+ξ̂

) and µ
′′′

(ρh
n+ξ̃

), we can only conclude that the

fully discrete scheme (229)-(231) is less dissipative than the numerical scheme (98)-(100).
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